
Tokyo, 15 Jan., 2022

Cache side-channel Attack on RISC-V processor

1



1. Introduction

2. Cache side-channel attack replication

3. Cache side-channel attack mitigation

4. Conclusion

2
Tokyo, 15 Jan., 2022



1. Introduction

2. Cache side-channel attack replication

3. Cache side-channel attack mitigation

4. Conclusion

3
Tokyo, 15 Jan., 2022



4

Introduction

• Spectre - Cache side-channel attack

• Target: RISC-V Out-of-order BOOM

• First variants:

• Spectre v1: Bound Check Bypass

• Spectre v2: Branch Target Injection

BOOM suitable for Spectre

s

e

c

r

e

t

Cache memory

…

…

• Branch Predictor Unit

• Speculative Execution

• Caching

• …

BOOM

L1 Cache

[2] Spectre (2019)[1] BOOM (2015)

https://doi.org/10.1109/ACCESS.2021.3134256


1. Introduction

2. Cache side-channel attack replication

3. Cache side-channel attack mitigation

4. Conclusion

5
Tokyo, 15 Jan., 2022



6

Spectre attack (1)

IF (a< 10)

Run B

a = 1

User Process

TRUE => Run B

a = 2 TRUE => Run B

a = 3 TRUE => Run B

a = X Maybe TRUE => Run B

… TRUE => Run B



7

Spectre attack (2)

Typical attack strategy:

• Setup processor cache, for example, fill or 

flush all the cache lines, as in Flush+Reload, 

Prime+Probe timing attacks approaches.

• Force mis-speculation in victim code to leak 

secret into a side-channel

• Attacker recovers secret from side-channel 

effect in the cache (usually the access load 

time).



8

Spectre attack (3)

• Observe cache accessing time of a value.

• Each attack attempt is to collect 1 byte in 

secret string.



Implement RISC-V processor 

• BOOM core: exploited

• Rocket core: not exploited

Attack log (success case)

Spectre attack on RISC-V Processor 

[4] Replicated Spectre (2020)[3] TEE-Hardware (2020)

FPGA VC707



1. Introduction

2. Cache side-channel attack replication

3. Cache side-channel attack mitigation

4. Conclusion

10
Tokyo, 15 Jan., 2022



Software prevention (1)

• Software method

• Fence

• Speculation Load Hardening

• Modify to strengthen victim program

• Require to re-compile source code

• Affect on performance

x < a_size

Return a[x] Return ‘\0’

TRUE

FALSE

if (x < a_size)

return a[x];

else

return ‘0’;

Original spectre v1 gadget

11



Software prevention (2)

fence

TRUE

FALSE
x < a_size

fence r,rw return ‘\0’
TRUE

FALSE
x < a_size

return ‘\0’

all_ones=0xFFFF

all_zeros=0x0000

p_state=all_ones

x < a_size

p_state=p_state

p_state=all_zerosx &= p_statereturn ‘a[x]’

TRUE

FALSE

return ‘a[x]’

Speculative Load Hardening

12



Software prevention (2)

13

No mitigation

• Normal execution cycle: 210

Mitigation using fence

• Normal execution cycle: 242 - 290

• Performance loss: 15 – 43%



Logging 
module

Sample 
Extractor

Feature 
Analysis

Training 
model

Detection 
module

Background 

monitoring 

program

100ms/sample Counters:

• Total of cycle

• Instruction retired

• Branch misprediction

• TLB miss

Model:

• Logistic Regression

• Support Vector Machine

• MLP network

• Target: RISC-V BOOM processor

• Using hardware performance counter (HPM) and machine learning

• Create a real-time background services

• Gather hardware performance counter

• Analyse to detect cache side-channel attack events

• System procedure:

Real-Time Spectre Attack Detection System (1)

14



• Dataset: 20.000 sample of HPMs

• Detection accuracy: 99.6 % 
(cross-validation)

• Performance overhead: 2.25%

Mean accuracy for cross-validation k-values.

Real-Time Spectre Attack Detection System (2)

System model

[4] Spectre Detection (2021) 15

https://doi.org/10.1109/ACCESS.2021.3134256


Mitigation 

strategy
Detection

Prevention

Software approach Hardware approach(*)

Idea or 

Research

• Analyse hardware 

performance counter

• Use machine learning

• Fence instruction

• Speculation Load 

Hardening (Index masking)

• Customized 

cache/processor

Benefits

• High accuracy and 

simple

• Low performance 

overhead

• Strengthen victim program

• Simple to implement

• Low performance 

overhead

• Apply for wide range of 

threats

Drawbacks

• Need to find action 

after detection

• Need to re-create 

model for new threat

• Require to re-compile 

victim code

• High performance 

overhead: 15-43%

• Complicated.

• Time consuming to 

develop

(*) Currently on research stage

Spectre mitigation researches on RISC-V Processor

16



1. Introduction

2. Cache side-channel attack replication

3. Cache side-channel attack mitigation

4. Conclusion

17
Tokyo, 15 Jan., 2022



18

Conclusion

1. Replicated Spectre attack on FPGA: Spectre (v1-v2), BOOM Core.

2. Software mitigation methods: Fence & Speculative Load Hardening, high performance overhead

3. Real-Time Spectre Attack Detection System: ~99.6% accuracy



19

References

1. C. Celio et al., “The berkeley out-of-order machine (boom): An industry-competitive, synthesizable, 

parameterized risc-v processor,” 2015.

2. P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on 

Security and Privacy (SP), 2019, pp. 1–19.

3. T. Hoang et al., "Quick Boot of Trusted Execution Environment With Hardware Accelerators," in IEEE 

Access, vol. 8, pp. 74015-74023, 2020.

4. A. Le et al, "Experiment on replication of side channel attack via cache of RISC-V Berkeley out-of-

order machine (BOOM) implemented on FPGA", CARRV 2020.

5. A. Le et al, "A Real-Time Cache Side-Channel Attack Detection System on RISC-V Out-of-Order 

Processor" in IEEE Access, vol. 9, pp. 164597-164612, 2021.



Tokyo, 15 Jan., 2022

Thank You

20


