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Introduction

• Spectre - Cache side-channel attack

• Target: RISC-V Out-of-order BOOM

• First variants:

• Spectre v1: Bound Check Bypass

• Spectre v2: Branch Target Injection

BOOM suitable for Spectre
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• Branch Predictor Unit

• Speculative Execution

• Caching

• …

BOOM

L1 Cache

[2] Spectre (2019)[1] BOOM (2015)
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Spectre attack (1)

IF (a< 10)

Run B

a = 1

User Process

TRUE => Run B

a = 2 TRUE => Run B

a = 3 TRUE => Run B

a = X Maybe TRUE => Run B

… TRUE => Run B
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Spectre attack (2)

Typical attack strategy:

• Setup processor cache, for example, fill or 

flush all the cache lines, as in Flush+Reload, 

Prime+Probe timing attacks approaches.

• Force mis-speculation in victim code to leak 

secret into a side-channel

• Attacker recovers secret from side-channel 

effect in the cache (usually the access load 

time).
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Spectre attack (3)

• Observe cache accessing time of a value.

• Each attack attempt is to collect 1 byte in 

secret string.



Implement RISC-V processor 

• BOOM core: exploited

• Rocket core: not exploited

Attack log (success case)

Spectre attack on RISC-V Processor 

[4] Replicated Spectre (2020)[3] TEE-Hardware (2020)

FPGA VC707
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Software prevention (1)

• Software method

• Fence

• Speculation Load Hardening

• Modify to strengthen victim program

• Require to re-compile source code

• Affect on performance

x < a_size

Return a[x] Return ‘\0’

TRUE

FALSE

if (x < a_size)

return a[x];

else

return ‘0’;

Original spectre v1 gadget
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Software prevention (2)

fence

TRUE

FALSE
x < a_size

fence r,rw return ‘\0’
TRUE

FALSE
x < a_size

return ‘\0’

all_ones=0xFFFF

all_zeros=0x0000

p_state=all_ones

x < a_size

p_state=p_state

p_state=all_zerosx &= p_statereturn ‘a[x]’

TRUE

FALSE

return ‘a[x]’

Speculative Load Hardening
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Software prevention (2)
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No mitigation

• Normal execution cycle: 210

Mitigation using fence

• Normal execution cycle: 242 - 290

• Performance loss: 15 – 43%



Logging 
module

Sample 
Extractor

Feature 
Analysis

Training 
model

Detection 
module

Background 

monitoring 

program

100ms/sample Counters:

• Total of cycle

• Instruction retired

• Branch misprediction

• TLB miss

Model:

• Logistic Regression

• Support Vector Machine

• MLP network

• Target: RISC-V BOOM processor

• Using hardware performance counter (HPM) and machine learning

• Create a real-time background services

• Gather hardware performance counter

• Analyse to detect cache side-channel attack events

• System procedure:

Real-Time Spectre Attack Detection System (1)
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• Dataset: 20.000 sample of HPMs

• Detection accuracy: 99.6 % 
(cross-validation)

• Performance overhead: 2.25%

Mean accuracy for cross-validation k-values.

Real-Time Spectre Attack Detection System (2)

System model

[4] Spectre Detection (2021) 15

https://doi.org/10.1109/ACCESS.2021.3134256


Mitigation 

strategy
Detection

Prevention

Software approach Hardware approach(*)

Idea or 

Research

• Analyse hardware 

performance counter

• Use machine learning

• Fence instruction

• Speculation Load 

Hardening (Index masking)

• Customized 

cache/processor

Benefits

• High accuracy and 

simple

• Low performance 

overhead

• Strengthen victim program

• Simple to implement

• Low performance 

overhead

• Apply for wide range of 

threats

Drawbacks

• Need to find action 

after detection

• Need to re-create 

model for new threat

• Require to re-compile 

victim code

• High performance 

overhead: 15-43%

• Complicated.

• Time consuming to 

develop

(*) Currently on research stage

Spectre mitigation researches on RISC-V Processor
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Conclusion

1. Replicated Spectre attack on FPGA: Spectre (v1-v2), BOOM Core.

2. Software mitigation methods: Fence & Speculative Load Hardening, high performance overhead

3. Real-Time Spectre Attack Detection System: ~99.6% accuracy
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