Q‘QGKHQ 4 o
% BAIHOC QUAC GIA THANH PHG HO CHI MINH v = & é o
Sraiée

i :u TRUGNG BAI HOC _KHOA HOC TU NHIEN
I KHOA DIEN 10 - VIEN THONG

P RISC-\
Vietnam 1_022

000

IMPLEMENTATION OF 32-BIT AND
64-BIT RISC-V ON HARDWARE

DUC-HUNG LE

VONG
<& oy,

15 January 2022

CONTENT

= |ntroduction to HCMUS, FETEL and DESLAB

= Sharing some RISC-V implementation results

= Ongoing Plans

axzzy Ui nhién |
$

> 14.000 students

HISTORY

Information technology % ~13.000 undergraduates
Division of Indochina College of . i *+ ~1.500 graduates
1941 Sci Biology and biotechnology
cience
Chemist 120 programs
1956 Faculty of Science emistry % 68 graduate
the University of Saigon Electronics and telecommunications * 52 undergraduate
1977 Ho Chi Minh City University Mathematics and computer science
1996 University of Natural Sciences Material science
2007 University of Science Physics and engineering physics
until _ vietnam National University HCMC Environmental science

Now (http://www.hcmus.edu.vn)

Geology

1 Leading key institution of undegraduate and post-graduate education, research, and technology
transfer in the fields of natural sciences, applied sciences and technologies of VNUHCM and
southern Vietnam.”?? 3

INTRODUCTION TO FETEL

Faculty of Electronics and Telecommunications (FETEL)

= Undergraduate (Bachelor of Science)
= Department of Electronics (IC Design, Biomedical Electronics, Automation Control)

= Department of Computer and Embedded Systems (Computer Engineering, Embedded
Programming)

= Department of Network and Telecommunications (Telecommunication Engineering,
Telecommunication Systems)

= Graduate
= Master of Electronics Engineering (Master of Science)
= Major of IC Design and Microelectronics
= Major of Computer — Electronics and Telecommunications
= Ph.D. of Radio and Electronics

INTRODUCTION TO DESLAB

‘”!l n 5
BN
17%(
H Fi »
ol

¥4

Current research themes
= Low power analog and digital IC design, Embedded designs (FPGA, MCU, CPU) and chip
verification

= Digital Signal Processing and Biomedical Signal Processing

= Smart Integration Systems

«&
f‘_; -

IC Design Test chip and verification FPGA Design EEG Signal Processing GPU-based Al system

5

BOOK TRANSLATION

= Alittle contribution to community: Translate “Digital Dlgltal DeSIQn

Design with Chisel” of Martin Schoeberl into Wlth Chlsel
Viethamese. Thiét ké mach s6 véi Chisel

= The translated book is free, open-access and has been
published since Q1/2021.

= Vietnamese version is available at page of Martin
Schoeberl: hitp://www.imm.dtu.dk/~mascal/chisel-
book.html

Martin Schoeberl

Ngwdidich: Lé Bire Hang

INTRODUCTION TO RISC-V

= RISC-V ISA defines the software interface, not hardware implementation.

= |n a RISC-V based SoC, RISC-V compatible core(s) will be used to run software compiled for
RISC-V ISA.
= Some open-source RISC-V 32-bit and 64-bit cores:
= RISC-V microcontroller (FE310-G003, GD32VF103, etc).
= Rocketchip (32-bit, 64-bit RISC-V)
= VexRiscV (32-bit, with MMU)
= PicoRV32 (32-bit, very small)
= XuanTie C910 (64-bit, high performance)
= Berkeley Out-of-Order Machine (BOOM) (64-bit RISC-V)

INTRODUCTION TO RISC-V

= Some commercial products using RISC-V

GOI2VF103VBTE

g RI18 219,
B RISCY .““ TRRi

(A L R R Y
(AL EE RN A NN ERNE R RN R N

GD32 RISC-V Dev Board (SeeedStudio) 8

HiFive1 (SiFive)

IMPLEMENTATION OF RISC-V ON HARDWARE

RISC-V SoC Design Flow

= A SoC needs more than just CPU cores!
= Additional IPs needed:

= Peripherals: GPIO, Timer, Accelerators, JTAG, etc.

= Bus(es): AXI, Avalon, TileLink, Wishbone, etc.

= Bus bridge, synchronizer, power management, etc.

- Long time to develop.

DMA CPU GPIO
DvP [UART
RISC-V RISC-V
JTAG 64bit 64bit SPI
AES [FPU I [FPU I rTC
otp - 8 s
KPU Ve
FPIOA CNN Accelerator
Timer ‘
PWM ‘
APU
SRAM FFT wDT ‘
Audio Accelerator
SHA256 ‘

Kendryte K210

K210 SoC from Kendryte.

IMPLEMENTATION OF RISC-V ON HARDWARE

RISC-V SoC Design Flow

t3CHIP

= Chipyard is a framework for designing and evaluating full-system hardware using agile teams.
It is composed of a collection of tools and libraries designed to provide an integration between
open-source and commercial tools for the development of systems-on-chip. [Source: Chipyard]

= Chipyard is a generator solution from UC-Berkeley - Faster time to develop

= Chipyard supports Rocket and BOOM cores

= Chipyard uses Chisel and mix-in Configs to generate Verilog RTL

IMPLEMENTATION OF RISC-V ON HARDWARE

RISC-V SoC Design Flow

= Example: Internal architecture of Rocketchip (Chipyard Rocket core generator):

RocketTie Rocketmia] || A4 Tiles: unit of replication for a core
. Rocket P]ﬂ il « CPU
n] [of + L1 Caches
il + Page-table walker
L2 banks:
St w + Receive memory requests
L swoms FrontBus:
[Contolbus] + Connects to DMA devices
Lo |—‘—"—'7 ControlBus:
BootROM | PLIC Debug) .
Metreribes ~ LS + Connects to core-complex devices

ms PeripheryBus:

=]
I I
\E&’ﬂl |“_"iﬂl Dl « Connects to other devices

L 5 SystemBus:
e slave + Ties everything together

11

IMPLEMENTATION OF RISC-V ON HARDWARE

RISC-V SoC Design Flow

= Example: Configuration using existing module

class MyCustomConfig extends Config(flesiiiatiess

new WithExtMemSize((1<<30@) * 2L) ++ 19

; ; Tile 0 SysBus |
new WithBlockDevice ++ P——

. 3-wBOOM || Hwacha | MemBus | L2
new WithGPIO ++ [crios |
new WithBaotROM wfl] s [vios |

h ha.DefaultH fi

new '-CJEE a le s‘su t w:cha(:on %g ++ Tie 1 Tie 2
new WithInclusiveCache(capacityKB=1824) ++ 3_wBOOML" Tacta ucoon
new boom.common.WithLargeBooms ++
new boom. system.WithNBoomCores(3) + L11§ " L1D$ L11$ L1D$

new WithNormalBoomRocketTop ++
new rocketchip.system.BaseConfig)

SimBlockDevice SimAXIMem

IMPLEMENTATION OF RISC-V ON HARDWARE

RISC-V SoC Design Flow

= Example: Allow flexible configuration by modification:

class MyCustomConfig extends Config(sttt mocs
i = To

new WithExtMemSize((1<<30@) * 2L ++

P— . (()) Tile 0 SysBus
new WithBlockDevice ++ mp— |~ _Me o o
new WithGPIO ++ SEics
new WithBootROM ++ L11$ L1D$ T
new hv:racha.Defe‘)ultHwachaConf%g ++ Tie 1 T 2
new WithInclusiveCache(capacitykB=1024) ++ e —— R—
new boom.common.WithLargeBooms ++
new boom.system.WithNBoomCores(2) ++ L11$ " L1D$ | L11$ " L1D$

new rocketchip.subsystem.WithNBigCores(1)++
new WithNormalBoomRocketTop ++
new rocketchip.system.BaseConfig)

SimBlockDevice SimAXIMem

13

IMPLEMENTATION OF RISC-V ON HARDWARE

RISC-V SoC Design Flow

= Example: Allow flexible configuration by modification:

class MyCustomConfig extends Config(TestHarness
new WithExtMemSize((1<<3@) * 2L) + T -
new WithBlockDevice ++ Tile 0 |_SysBus
new WithGPIO ++ swsooml b sescra | [Ememis]
new WithJtagDTM ++ T
new WithBootROM ++ L11$ L1D$ e
new WithMultiRoCCConvAccel(2) e L_BootROM |
new WithMultiRoCCSha3(1) ++ Tile 1 Tile 2
new WithMultiRoCCHwacha(®) ++ 3.wBOOM SHA3 O BGsat ComviiN
new WithInclusiveCache(capacityKB=1024) ++
new boom.common.WithLargeBooms ++ LIS L1D$ L1I$ L1D$
new boom.system.WithNBoomCores(2) ++
new rocketchip.subsystem.WithRV32 ++
new rocketchip.subsystem.WithNBigCores(1)++
new WithNormalBoomRocketTop ++ SimBlockDevice SimAXIMem
new rocketchip.system.BaseConfig)

SoC
IMPLEMENTATION OF RISC-V ON HARDWARE Spemffﬂ““”
Peripheral Core specs Additional
RISC-V SoC Design Flow specs configs
Chipyard I

= Design flow using Chipyard: configs.

= SoC specifications: Number of cores, 32-bit/64-bit, peripheral, FIRRTL

accelerators, L1 cache, etc. genelam
= Chipyard configs: configuration using Scala and Chisel.
RTL generators
= FIRRTL generators: Generate FIRRTL from Chisel/Scala to

feed into RTL generators.

= RTL generators: Generate Verilog RTL from FIRRTL, along
with other necessities.

Result verified?

VLS| & FPGA flow.

15

IMPLEMENTATION OF 32-BIT RISC-V ON FPGA
[T Debug |rerereeees .
RISC'V SOC FPGA Design FIOW Fé;t;{::rr: SD‘;T&”&‘:‘"‘ IP init script
[

v
= |nput: Verilog code from RTL generators Vivado/Quartus
= Verilog RTL codes is fed into FPGA Design Flow %

Place & Route
= Faster prototype implementation and check functionality I

Generate

= Develop demo results pistream e

= Qutput: Bitstream file to program on FPGA

Finish

IMPLEMENTATION OF 32-BIT RISC-V ON FPGA

RISC-V SoC VLSI Design Flow

= Input: Verilog code from FPGA design flow

= Verilog codes is fed into ASIC Design Flow

= Optimized results on physical design

= Redundant codes must be removed in Verilog RTL

= Output: GDS stream file for tape-out

somerresnaen Debug

RTL from
Chipyard

SDC constraint

Technology
library + IP

)

Synthesis +
(DFT)

)

STA + Formality

'

Physical Design

N.,

Yes

tape-out

GDS!I mask to

17

IMPLEMENTATION OF 32-BIT RISC-V ON FPGA

RISC-V SoC FPGA/VLSI Flow

= Example result (using LiteX framework with VexRiscV core):
= Running Linux on a RISC-V SoC on FPGA (Xilinx Nexys4DDR).

= SoC specification:

= VexRiscV 32-bit with MMU + SMP. JttyACKIX =
= DRAM and SDCard (in FPGA).
= Ethernet interface (not shown).
= AES-128, RSA-2048, SHA-1 accelerator (in CPU core).
= Exported MMAP + DMA WB/AXI bus for user extension.
= Internal ROM (for bootloader) + SRAM.
= Load Linux image through UART connection.

8

‘ Csmgle core) ’

DDR3 16-bit

-
-

lmnx Capable SoC

WB/AXI WB/AXI
User Design

FPGA

@)

SDCard

IMPLEMENTATION OF 32-BIT RISC-V ON FPGA

RISC-V SoC FPGA/VLSI Flow

= Example result (using LiteX framework with VexRiscV core) on FPGA:

19

IMPLEMENTATION OF 32-BIT RISC-V ON FPGA

RISC-V SoC FPGA/VLSI Flow

= Develop some basic and traditional cryptography cores as accelerators on this Litex on FPGA

= AES-128, SHA-1, RSA-2048 cores

VexRiscV-SMP core

[aEs2s] [sHat | Rsazoas]

L1I$ L1D$

Banana Memory
Bus

BMB to Wishbone

Core_ 0

«—>» LiteDRAM

Bridge

<—» LiteSDCard

!
£
=

Resource Base AES-128 | AES +
Utilization SHA-1
LUT 8697 8827 10263
LUTRAM 421 421 421
FF 7577 7643 9206
BRAM 44 44.50 44.50
4 4 4
98 98 98
7 7 7
1 1 1

AES-128 +
SHA-L +
RSA-2048
33595
437
64389
44.50
4
98
10
1

20

10

IMPLEMENTATION OF 32-BIT RISC-V ON FPGA

RISC-V SoC FPGA/VLSI Flow

= Develop some basic and traditional cryptography cores as accelerators on this Litex on FPGA

= SHA-1 accelerator functional verification

21

IMPLEMENTATION OF 32-BIT RISC-V ON ASIC

RISC-V SoC FPGA/VLSI Flow

= Results (using LiteX framework with VexRiscV core) on ASIC (PnR results):

Cell Count
-~ Utilization Ratio: 9.5078
Hierarchical Cell Count: 41847 Utilization options:
Hierarchical Port Count: 383701 - Area calculation based on: site row of block vlsi
Leaf Cell Count: 821304 - Categories of objects excluded: hard macros macro keepouts soft macros io cells hard blockages
Buf/Inv Cell Count: 100447 Total Area: 15963580.6290 a - -
Buf Cell Count: 24374 Total Capacity Area: 15582053.1330
Inv Cell Count: 76073 Total Area of cells: 7912595.8449
CT But/Inv Cell Count: o Area of excluded objects:
Combinational Cell Count: 420496 - hard macros . 125309.2223
Senlent Jok CeUL Count: Aok - macro_keepouts : 3134.9253
e A e s sy e A - soft_macros 2 6.0000
- io_cells : 0.0000
- hard blockages : 381527.4960
Utilization of site-rows with:
Combinational Area: 1663492.92 - Site ‘unit': 6.5078
Noncombinational Area: 6249090.54
Buf/Inv Area: 477995.35
Total Buffer Area: 81037.93
Total Inverter Area: 396957.42
Macro/Black Box Area: 6.00
Net Area: :}
Net XLength: 0.00
Net YLengt 0.00
Cell Area (netlist): 7912583.47
Cell Area (netlist and physical only): 8158254.40
Net Length: 0.00 22

11

IMPLEMENTATION OF 32-BIT RISC-V ON ASIC

RISC-V SoC FPGA/VLSI Flow

= Results (using LiteX framework with VexRiscV core) on ASIC (PnR results):

Frequency 50 MHz
Area 15,963,580 um?2
Dimension 3.9x3.9mm
Power 42.1 mW (@50MHz)
Process CMOS 65nm
DRC Clean
LvVS Pass

IMPLEMENTATION OF 64-BIT RISC-V ON ASIC

X . TestHarness
= Architecture of Dual-core RISC-V 64-bit Top
S B MemBl
- 2-core RV64GC Rocket CPU ECTH ST N
FrontBus || ControlBus || BoOTROM | uni':g -::;hues::nks
‘ L1' L2 CaChe ‘ PeripheryBus H GPIO |
- Control Bus Tile 0 Tile_1
- System Bus
) Rocket PTW Rocket PTW
- Peripheral Bus
- BOOTROM, GPIO, etc. | s I L1D$ I[1] L11% Il L1D% |
‘ TileBus | ‘ TileBus ‘

24

12

| Github project

_.i CTS CCOpt I

IMPLEMENTATION OF 64-BIT RISC-V ON ASIC Cloe | 1
Chipyard reposition | Route I‘—
e . . . Checkout/Build/Setup
= Digital design flow with Chisel Vodules
.. Clone Chipyard
2. Build environments, tools, libraries Goulls
DualCoreConfig ﬂrl I PT timing l
3. Config DualCoreConfig.fir
X X (}cncmwl l
4. Generate RTL codes using FIRRTL and VerilogRTL tool
DualCore RISC-V Vcrilugl I DMSA ECO }— ECO loops
5. Setup timing constraints, library, scripts J l
6. Run synthesis to generate gate-level netlist
Backend flow preparation | DRC Base |
7. Check LEC Post-Synthesis l l
8. Generate floorplan, macro, blockages A TR | P
15 Me
9. Run PnR with gate-level netlist and timing constraints i gt i [
10. Run LEC Post-Route verification FALL
11. Run parasitic RC extraction
12. Run ECO Primetime ECO to fix timing Sign-off Nen equivalest
13. Run DRC, LVS, antenna, boundary, ERC verification
14. Run EMIR static, dynamic and signal EM verification Platplanaing , | EMIR chécks
15. Run final Sign-off verification I [
16. Tape-out | Placement |— | Tapeout |

IMPLEMENTATION OF 64-BIT RISC-V ON FPGA

RISC-V SoC FPGA/VLSI Flow

locnguyen@locpc: ~

.[fesvr-zynq pk hello
'

13

IMPLEMENTATION OF 64-BIT RISC-V ON ASIC

| Seecifications Vales
Frequency 500 MHz
Area 1,384,255 ym?
Dimension 1.17 x 1.17 mm
Power 493.6 mW (@500MHz)
Process FinFET 7nm
DRC, Antenna, boundary, ERC Clean
LVS Pass
EM and IR drop Clean
LEC from RTL to Post-Routing Design Equal

27

IMPLEMENTATION OF 64-BIT RISC-V ON ASIC

= ERC and Antenna Verification

RULECHECK MPC Odrawing Layer outsi rBr vevees TOTAL
RULECHECK MPCdummy Layer out PrBr TOTAL
PC_RVDMYdrawing Layer outside PrBr TOTAL

{ MPCdummya L. o P Rt wiasevineaiaca, TOTAL:

BPCdr yer o Bro.. ... TOTAL

BPC Odrawing Layer outside PrBr TOTAL

< BPCdummy PrBr TOTAL
r_outside PrBr . +vo TOTAL

. TOTAL

TOTAL

TOTAL

. ... TOTAL

RULECHECK MB2 m y ‘Br . 5 winis e 0uH TOTAL

RESULTS STATISTICS

ickup.p t yom— TOTAL Re: it
TOTAL t Count
TOTAL

RULECHECK
RULECHECK
RULECHECK

TC
TOTAL

iDlJl“;
; TOTAL

CPU Time
REAL Time 345
Original L e t 257679657 (

28

IMPLEMENTATION OF 64-BIT RISC-V ON ASIC

= DRC and LVS Verification

i i o SRR P SRS U 3 a ide PrBr
er_outside
PrBr

CALIBRE EN

VS REPORT

|RULECHECK

| - RULECHEC

29

PCB DESIGN FOR RISC-V CHIP TEST

= PCB Design for 32-bit RISC-V Chip (Dedicated to Pham’s Lab, UEC, Japan)

15

PCB DESIGN FOR RISC-V CHIP TEST

= PCB Design for 64-bit RISC-V Chip (Dedicated to Pham’s Lab, UEC, Japan)
T o Vi :) ¥ —“‘ o . —— u&ﬂ

AEERRRRRREREE

CCLL LT | / AWTTTAARRRIALIL
|

sttt
LRI TTTE] Ill]/l_l__ -
/

31

PCB DESIGN FOR RISC-V CHIP TEST

= Peripheral board for RISC-V chip test
= Peripheral boards for CPU testing
= UART
= JTAG
= SPI (Flash, SD Card)
= |/O: Switch, Buttons, LEDs
= Compatible with FPGA boards or other CPUs/MCUs

32

ONGOING PLANS WITH RISC-V

= H-23 Chip: DAQ Chip based on RISC-V
= CPU 32-bit RISC-V (Litex): In progress
= Flash ADC 8-bit (Completed)
= Analog Front End (AFE): In progress
= Traditional and Lightweight Cryptos: In Progress

= Al accelerator with RISC-V

= DNN Weaver (open-source)

AXI
= 2-core RISC-V 64-bit DualCore — DnnWeaver

RISC-V m I poie_cl_data ” ol_ddro ” ol_ddr1. ” ol_ddr2 ” ol_ddr3 ” ol_ddrd I

All codes and designs will be open
and free-access after completion

CONCLUSION

= The objective of this presentation is to share some our RISC-V implementation
results on FPGA and ASIC.

= We are the newbie in RISC-V implementation - no new or state-of-the-art
techniques > We hope to give a specific system on RISC-V in the next year.

= We look forward to collaborate with persons or organizations in IC design and SoC
design.

34

17

THE END
THANK YOU

A LDHUNG@HCMUS.EDU.VN

18

