

VIETNAM NATIONAL UNIVERSITY HANOI (VNU) Information Technology Institute

A Tiny Neural Network System base on RISC-V Processor

Ngo-Doanh Nguyen, Duy-Hieu Bui, Xuan-Tu Tran

Laboratory for Smart Integrated System (SISLAB) Information Technology Institute (ITI) Vietnam National University, Hanoi (VNU) Website: <u>http://www.iti.vnu.edu.vn</u>

Artificial Intelligent of Things

- Billions of devices provide a huge numerous of information.
- ⇒ Centralized processing methods are not suitable.
- ⇒ Decentralized processing methods are necessary.
- AI methods provide computational
 power for decentralization.

\Rightarrow AI for IoT is needed in decentralized processing!

- 1. Motivation
- 2. Challenges & Solutions
- 3. HW Architecture for AloT
- 4. ANN IP under PULPino Platform
- 5. CNN IP under Chipyard Platform
- 6. Conclusion

1. Motivation

- 2. Challenges & Solutions
- 3. HW Architecture for AloT
- 4. ANN IP under PULPino Platform
- 5. CNN IP under Chipyard Platform
- 6. Conclusion

- Al algorithm:
 - Complexity ↑, accuracy ↑
- Cloud computing:
 - High calculability
 - High resource
- Edge computing:
 - Low latency
 - Low cost

Training

⇒ A Tiny Neural Network System is a solution for edge devices!

Dataset

Model

Ready to use SoC platforms

Pulp-platform

Si F

- RISC-V processors: Rocket chip, Arian
- Simulator: Validator, Firesim (FPGA)
- Configurable IPs: SHA-3, testchip IPs
- Interconnect: AXI4, Tilelink

- Libraries
 - BSG BaseJump STL: clk_gen, async_fifo, synchronizers, Front-Side Bus, Network-on-chip IPs, etc.
 - Chips Alliance

✓ An opportunity for fast HW implementation at System level

Solutions for Edge Computing

- Al for constrained devices:
 - Low power
 - Lightweight computation
 - Small memory footprint

\Rightarrow **Proposal solutions:**

- Modified NN algorithms
- Lightweight computational component (MAC, Pooling,...)
- System Integration with lowpower **RISC-V processors**
- Lightweight DMA design

- 1. Motivation
- 2. Challenges & Solutions
- 3. HW Architecture for AloT
- 4. ANN IP under PULPino Platform
- 5. CNN IP under Chipyard Platform
- 6. Conclusion

* A tiny AI accelerator connected with a RISC-V for low-cost low-power

- Al Accelerator for high computational tasks
- Low power RISC-V core for configuration, control and data acquisition
- Communication interface (SPI, UART, I2C, ...) for peripheral devices

A Tiny Neural Network Accelerator

- 1. Nguyen et al., 'An Efficient Hardware Implementation of Artificial Neural Network based on Stochastic Computing', NICS'18
- 2. Tran *et al.*, 'A Variable Precision Approach for Deep Neural Networks', ATC'19 1/14/2022 Ngo-Doanh Nguyen

Multiple-Precision MACs

- 1. Motivation
- 2. Challenges & Solutions
- 3. HW Architecture for AloT
- 4. ANN IP under PULPino Platform
- 5. CNN IP under Chipyard Platform
- 6. Conclusion

✓ PULPino uses RISC-Y as core processor and AXI4/AHB as bus interface

⇒ Slave: CPU writes configurations and reads core status

⇒ Master + DMA: start data transfers from/to memory Ngo-Doanh Nguyen

ANN IP Implementation Results on PULPino

Accuracy HW vs SW (%)

1/14/2022

Ngo-Doanh Nguyen

- 1. Motivation
- 2. Challenges & Solutions
- 3. HW Architecture for AloT
- 4. ANN IP under PULPino Platform
- 5. CNN IP under Chipyard Platform
- 6. Conclusion

- What is Chipyard?
 - A framework for designing and evaluating SoC
 - A collection of tools and libraries for developing SoC
- How to integrate your IPs into Chipyard?
 - IPs and Peripherals have specific addresses
 - MMIO is the easiest way to associate with RISC-V core
- Integration within 4 steps
 - Design your own module
 - Link your IPs with MM registers
 - Add your specified bus interface
 - Configure your module's params

Chipyard Template

CNN IP Implementation Results on Chipyard

	8-bit SoC	8-bit CNN IP	16-bit SoC	16-bit CNN IP
Frequency (MHz)	50	50	50	50
Slice LUTs	31818 (50.19%)	7842 (12.37%)	42792 (67.50%)	18826 (29.69%)
Slice registers	19765 (15.59%)	4248 (3.35%)	24218 (19.10%)	8701 (6.86%)
Slice	9931 (62.66%)	2413 (15.22%)	12749 (80.44%)	5418 (34.18%)
Block RAM	72.5 (53.70%)	2.5 (1.85%)	72.5 (53.70%)	2.5 (1.85%)
DSP	0 (0%)	0 (0%)	0 (0%)	0 (0%)

ITI

Ngo-Doanh Nguyen

- 1. Motivation
- 2. Challenges & Solutions
- 3. HW Architecture for AloT
- 4. ANN IP under PULPino Platform
- 5. CNN IP under Chipyard Platform
- 6. Conclusion

Open source hardware is maturing, especially for AI **CHIPYARD**

Pulp-platform

SiFive

- Our tiny Neural Network Systems have been demonstrated in those open source hardware.
 - ANN IP on PULPino platform
 - CNN IP on Chipyard platform
 - In future, more complex, more practical algorithms will be implemented (SNN, GCN, ...)
- SISLAB is willing to support the community in Vietnam

VIETNAM NATIONAL UNIVERSITY HANOI (VNU) Information Technology Institute

Information Technology Institute (ITI) Vietnam National University, Hanoi (VNU) Website: <u>http://www.iti.vnu.edu.vn</u>