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1. Side channel attack
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Side channel attacks can easily break the security of different cryptographic

implementations.

The openness and flexibility of the RISC-V could be exploited for mounting

side channel attacks.

- Power consumption

- Electromagnetic Radiation

- Acoustic vibrations




2. Side channel attack evaluation

Assessing the security of an electronic system against SCA is a long,
expensive, and complex process.

Requires various skills and expertise from very different fields (electronics and
hardware, signal processing, statistics, cryptography, deep learning, etc.)

Traditional SCA methods: Correlation power analysis (CPA), Differential power
analysis (DPA), Template attacks (TAS) require some preprocessing
techniques: traces synchronization, noise filtering, POl selection,
dimensionality reduction,...

Deep learning based SCA methods: they can break conventional SCA
countermeasures (masking, misalignment, shuffling) without knowledge of the
countermeasures.
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- 32-bit Murax RISC-V MCU, 48 Mhz running on Sakura-G board.

- Keysight DSOX6004A Oscilloscope is employed to measure side-channel data
when the RISC-V MCU operates the AES-128 encryption.
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Step 1: Repeatedly sends plaintexts to the RISC-V MCU and commands the oscilloscope
to capture the power traces when the MCU executes each encryption.

Step 2: The control PC receives the measured data from the oscilloscope and
corresponding ciphertext from the MCU.

Step 3: Verifies the ciphertext to ensure that the MCU works correctly. The power traces
and the corresponding plaintexts and ciphertexts are saved to NumPy files for creating
dataset.




RISC-V side channel data prepararion

2. Dataset reconstruction
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- Reduce as ~200-fold compared to original power traces (from 9919
to 50 dimensions).
- Using only three labels HW3, HW4, HWS5 for training.




RISC-V side channel data prepararion

2. Dataset reconstruction

- Power consumption model:
h,. = HW (Sbox(Plaintext, ®k))

- Pearson correlation coefficient
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- Taking 50 highest values of correlation to deduce 50 positions of power
trace

- From 50 positions, create the dataset for all hypothesis keys
corresponding to three labels HW3, 4, 5




RISC-V side channel data prepararion

2. Dataset reconstruction

Dataset 1:

+ Unmasked ASCAD
+ 3000 power traces
+ 700 features
Dataset 2:

+ Unmasked ASCAD
+ ~2000 power traces
+ 50 features

Dataset 3:

+ RISC-V SCA data

+ 10000 power traces
+ 50 features
Dataset 4.

+ RISC-V SCA data

+ ~7000 power traces
+ 50 features




Deep learning based non-profiled SCA

» Profiled deep learning based SCA attack

- Require access to a copy of the target device with full control.

- Need a huge number of power trace to construct a template model.
- Require a DL training for all guess keys.

- Popular architectures: MLP, CNN

» Non-profiled deep learning based SCA attack

- Do not require a copy of target device.

- Side channel power trace and leakage function are directly used for key
extraction.

- Require a DL training for each hypothesis key (256 trainings for AES-
128 subkey)

- Popular architectures: MLP, CNN, BNN.
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Deep learning based non-profiled SCA

Previous works:

» Differential deep learning analysis (DDLA) is the first DL based SCA
technique in non-profiled context [1].

» The dimension of data input determines the complexity of neural
network. DDLA requires training process for all hypothesis keys.

» Hamming Weight model cause imbalanced data problem [2]. There are
no reports of using HW labeling in non-profiled context.

» The impact of additive noise has been investigated in profiling DL
based SCA [3], not in non-profiled context.

[1] B. Timon, “Non-profiled deep learning-based side-channel attacks,” IACR Cryptol. ePrint

Arch., vol. 2018, p. 196, 2018.

[2] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse of class imbalance

and conflicting metrics with machine learning for sidechannel evaluations,” 2018,.

[3] J. Kim, et al. “Make some noise. unleashing the power of convolutional neural networks for
_profiled sidechannel analysis,” IACR Transactions on Cryptographic Hardware and Embedded

Systems, pp. 148-179, 05 2019 11




MLP architecture:
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Proposed MLP for non-profiled side channel attacks [1]

[1] Ngoc-Tuan Do, Van-Phuc Hoang, Van-Sang Doan, “Performance Analysis of Non-profiled Side Channel Attack Based on
Multi-Layer Perceptron Using Significant Hamming Weight Labeling,” INISCOM 2022 (Accepted). 12



Deep learning based non-profiled SCA

MLP architecture:

» Non-profiled SCA based on multi-layer perceptron with power traces for
software AES-128 implementation on RISC-V microprocessor.

» Our proposal uses correlation for reducing the data dimension (ie. From
9919 to 50).

» Using three significant HW values to deal with the imbalance dataset
problem.

» The proposed method reduces the number of required power traces
(30%).
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Deep learning based distinguisher:
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Experimental results:

Dataset 1:

+ Unmasked ASCAD
+ 3000 power traces
+ 700 features

Dataset 2: § o

+ Unmasked ASCAD
+ ~2000 power traces
+ 50 features
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Experimental results:

Dataset 3:

+ RISC-V SCA data

+ 10000 power traces
+ 50 features

Dataset 4.

+ RISC-V SCA data

+ ~7000 power traces
+ 50 features
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» Side-channel analysis countermeasures are categorized into masking and
hiding.

» In[1,2], the authors showed that DL based methods can break conventional
SCA countermeasures (masking, misalignment, shuffling) without
knowledge of the countermeasures in non-profiled context.

» Our experimental results have demonstrated in that DL based non-profiled
SCAs are sensitive to additive noise.

» Hiding countermeasures are better methods for preventing deep learning
based side-channel attacks.

[1] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas, “Study of Deep Learning Techniques for Side-Channel Analysis
and Introduction to ASCAD Database,” CoRR, pp. 1-46, 2018.

[2] B. Timon, “Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2019, no. 2, pp. 107-131, 2019, doi: 10.46586/tches.v2019.i2.107-131.
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» Alipour et al. [1] showed that a noise-generation-based hiding
countermeasure may provide better protection against non-profiling DLSCAs
than a masking countermeasure.

» The author in [2,3] presented two hiding methods called RDBB and RDFS
against DL based SCA attack on RISC-V processor.

+ RDBB are based on controlling noise levels in measurements and
provides better protection against the state-of-the-art non-profiling
DLSCA.

+ RDFS generates more than 219,000 distinct frequencies for driving
only the cryptographic accelerators.

w—
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Conclusions and future works

Assessing the security of RISC-V processors against SCA is
necessary and important.

DL based methods can provides promising solutions for SCA
evaluation process in non-profiled context.

Preliminary results have clarified the advantages of this approach.

Experimental results have demonstrated in that DL based non-
profled SCAs are sensitive to additive noise. Hiding
countermeasures are suitable for preventing DL based SCA on
RISC-V processors.

New DL models need to be considered to improve the efficiency of
evaluation process, such as multi-label learning, multi-task learning.
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