

The Road Ahead Mark Himelstein CTO, RISC-V International

RISC-V Day Japan 2023 June 2023

Overview

- RISC-V Overview
- Why People Use RISC-V
- Embedded
- Portability
- Embedded & Real Time ISA Extensions
- SW ecosystem

The definition of open computing is **RISC-V**

RISC-V°

RISC-V is the most prolific and open Instruction Set Architecture in history

- RISC-V is inevitable
- RISC-V enables the best processors
- RISC-V is rapidly building the strongest ecosystem

10s of Billions of RISC-V cores deployed for profit!

Open Source HW or Open Standard?

- We are officially an Open Standard HW ISA Architecture
- We are an Open Standard that works heavily with Open Source upstream projects (LINUX, GCC, LLVM, etc.)
- We don't do reference implementations
- Our work product are specifications with support from Golden Models and Basic Tests

Unlike Open Source Software ...

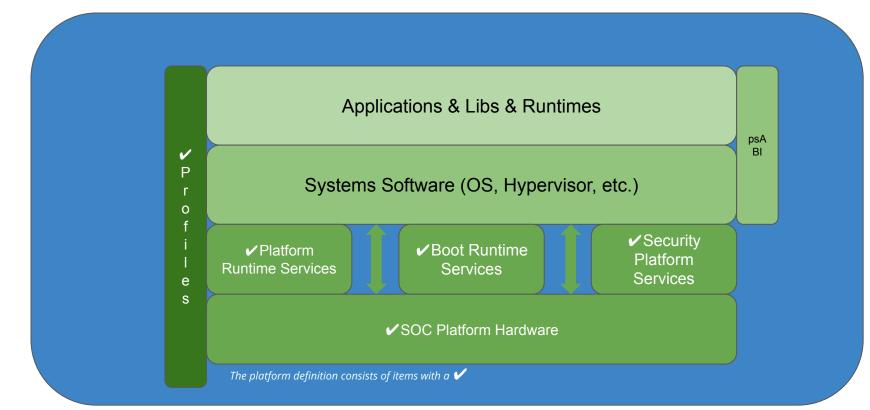
- Proprietary Custom Extensions are Encouraged and Welcome
- Products don't just include the ISA, they can do custom implementations/extensions of/to the ISA
- Copyleft is a non-sequitur
- No restrictions on how the specification can be used
 Only restrictions on branding

Why RISC-V?

- Flexibility
- Cost
- Ecosystem
- Our position in History
- EDA Renaissance
- Pride of Ownership

Portability

- Unified common standard and a robust Software Ecosystem
- A robust economy around systems and software is reliant on portability
- Application & Runtime Software
 - Profiles
 - API (e.g. POSIX)
- Operation Systems
 - Platforms
 - Supervisor Execution Environment (SEE)
 - Profiles


Profiles

Bases	Public Name 1			Name 2	Future	
RV32I RV64I	RVI[20] ^{RVI20U32} RVI20U64 RV32I RV64I	RVA20 ^{RVA20U64} RVA20S64 RV64I	RVA22 ^{RVA22U64} RVA22S64 RV64I	RVA23 RV64I		
Load Store Jumps Branches Add Subtract Logical	On years released, this only has a Mandatory Base All other compatible ratified extensions are optional	Mul/Div Atomics Compressed Float Double Priv 1.11 MemRegions Fences VirtualMem	Vector Bitmanip Scalar Crypto FP16 Priv 1.12 Hypervisor Cache	Vector Crypto PtrMasking BFloat16 Zcompressed Priv 1.13	Android Features	More profile types: RVB, RVM RV128 Matrix Ops SPMP/IOPMP CFI CHERI GPU 48/64 bit instructions
MAJOR					 MAJOR	

- Only a subset of extensions are listed above and it is not an exhaustive list
- Some extensions may be optional or non-profile in one profile and be mandatory in another

Platforms

ISA Extensions Targeted at Embedded and Real Time

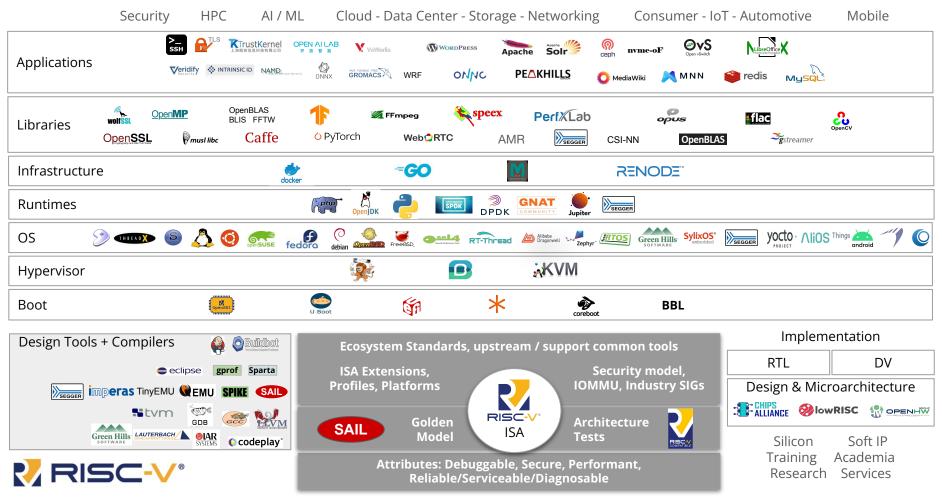
- Extensions: Fast Interrupts, Compressed Instructions (plus Zc*), FP in integer registers, Multiply without divide, Vector for embedded, S mode timer access, S mode w/o MMU, Wait on reservation set, Pause Hint, Physical Memory Protection, Scalar Crypto
- Profile Families: RVI, RVB, RVM
- Bases: RV32I, RV32E, RV64E

What We Have Done This Year

- Ratified ISA Specifications
 - Profiles, Code Size Reduction
- Ratified Fast Tracks
 - Counters, Total Store Ordering, RV32E/RV64E, Non Temporal Hints
- Documentation
 - Unpriv in Asciidoc, Asciidoc Priv draft
- New Task Groups & Special Interest Groups
 - Debug, Trace, and Performance Monitoring (DTPM) TG , Graphics SIG, RISC-V Common Software Interface (RVM-CSI) SIG, Vector (SIMD) SIG, Control Transfer Records TG

What's Coming Soon?

- Profiles
 - RVA23, RVI23, RVB23, RVM23, BOD committee on comprehensive ACTs & Certification
- Platforms
 - Portability for Systems Software (PRS, BRS, Platform Security, SOC HW, Profiles)
- ISA
 - Advanced Interrupts, QOS Register Interface, Control Transfer Records, Debug, Fast Interrupts, I/D Synch, Priv 1.13, Shadow Stacks/Landing Pads, Vector Crypto, Vector FP16
- ISA Fast Tracks
 - CAS, BFloat16, Conditional Ops, Counter Mode FIltering, HW PTE A/D, Maybe Ops, Additional Scalar FP, Counter Delegation,
- Non-ISA
 - IOMMU, Confidential VM extension, IOPMP, Nexus Trace,
- Documentation
 - Full time RVI DOC Architect/Writer approved
 - BOD committee on dev experience (content & UX)
 - Glossary, Navigation



Software Ecosystem

This is our number one priority

Accelerating the Rich RISC-V Ecosystem

Android

- Google Support
 - Tier 1
- Google Requirements
 - Engagement with RISC-V
 - Likely in 2024
 - Much is underway
- Lifetime can be 10 years

RT-Thread on RISC-V

RV32

- HiFive1
- RV32M1_VEG
 A
- HPM6750
- GD32VF103
- AB32VG1
- CH32V103
- CH32V208
- CH32V307
- CH569
- BL808
- ESP32C3

RV64

- K210
- Allwinner D1
- Allwinner D1S
- QEUME/RISCV64
 VIRT

RV-Core

- bumblebee
- QingKeV3
- QingKeV4
- E310
- cv32e40p
- Andes D45
- SMART-EVB for T-Head CPU E9xx Series
- PicoRV32

Software Ecosystem Resources

- Foundational Software Status for each extensions
- Draft <u>spreadsheet</u> of software on RISC-V status (140+ being tracked)
 - Hired RVI Software Ecosystem Director. First task is a comprehensive one stop clearinghouse of RISC-V commercial and open source software status
- RISC-V Ecosystem Landscape
- RISC-V <u>Exchange</u> (100s)
- A new Linux Foundation Project named RISE to accelerate open source software development on RISC-V

Join RISC-V

Change the World!

Questions

