

An FPGA-based Implementation of Quantum Computer Simulator Qulacs

Takefumi MIYOSHI²Yoshiki YAMAGUCHI³ Kaijie WEI¹ Hideharu AMANO¹ **Ryohei NIWASE³**

¹Graduate School of Science and Technology, Keio University ²WasaLabo, LLC. ³Graduate School of Science and Technology, University of Tsukuba

Introduction

Quantum computing has achieved significant developments, nevertheless, most quantum hardware is only accessible to the public through the cloud environment or supercomputers. Among all challenges in the current emulator development, memory bomb comes to be the most severe problem for a practical quantum emulator. In this research, we propose to use Trefoil FPGA with an extensive

Qulacs Optimization using HLS

Taking H gate as an example:

- \square n-qubit quantum circuit with 2^n states saved in vector state []
- Target gate: t
 - $index_0 = b_{n-1}b_{n-2}\dots 0_t b_{t-1}b_{t-2}\dots b_0$
 - $index_1 = b_{n-1}b_{n-2} \dots 1_t b_{t-1}b_{t-2} \dots b_0$
- $x_0 = state[index_0]; x_1 = state[index_0 + 1]$ $y_0 = state[index_1]; y_1 = state[index_1 + 1]$ state[index_0] = $\frac{1}{\sqrt{2}}(x_0 + x_1)$; state[index_1] = $\frac{1}{\sqrt{2}}(y_0 + y_1)$ $state[index_0 + 1] = \frac{1}{\sqrt{2}}(x_0 - x_1); state[index_1 + 1] = \frac{1}{\sqrt{2}}(y_0 - y_1)$ Working on all the state vectors $b_{n-1} \dots b_0$

storage system to overcome resource limitations as shown in Figure 1. We summarize our work as follows.

- A high-speed quantum simulator, Qulacs [1], on the M-KUBOS FPGA cluster ■ HLS-based quantum gate implementations H gate, S gate, CNOT gate, and a dense matrix computation
- Performance improvement to a similar level of the Ryzen sever
- Stable performance of increasing qubits with board extension

Quantum Gates

A quantum state expression:

$$\psi\rangle = a_0|0\rangle + a_1|1\rangle \quad (|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix})$$
 (1)

n-qubit system:

Streaming processing depending on target gate (t)'s location Data stream optimization using buffering:

Figure 3: Hadamard gate optimization using buffering

Evaluation

Execution time of naive implementation:

$$|\psi\rangle = a_{0...00}|\ldots 00\rangle + a_{0...01}|0\ldots 01\rangle + \dots + a_{1...11}|1\ldots 11\rangle$$

$$|\psi\rangle = a_{0...00} \begin{bmatrix} 1\\0\\ \vdots\\0 \end{bmatrix} + a_{0...01} \begin{bmatrix} 0\\1\\ \vdots\\0 \end{bmatrix} + \dots + a_{1...11} \begin{bmatrix} 0\\0\\ \vdots\\1 \end{bmatrix}$$
(2)

Versatile Quantum Gate Implementation		
Quantum Gate	Meaning	Matrix
H (Hadamard)	Convert the qubit from clustering state to uniform superposed state	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
S	Rotates qubits 90° around the Z axis, counterclockwise	$\begin{bmatrix} 1 & 0 \\ 0 & \exp{-\frac{i\pi}{2}} \end{bmatrix}$
CNOT (Controlled NOT)	Entangle & disentangle Bell states	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
Matrix	Arbitrary 2 quantum gates multiplication	

Target Platform

Figure 4: Naive implementation concerning target qubit and execution time

Time evaluation of H gate after optimization

PL Part 1143 K Logic cell 70.6Mb Memory

1968 DSPs

tem	Specification	
Form Factor	$244 \text{mm} \times 244 \text{mm} \text{(microATX)}$	
FPGA	XCZU19EG-2FFVC1760	
Memory	PS: 4GB DDR4-2400	
	PL: 1x 4GB DDR4-2400 SODIMM Socke	
I/O	$4 \times \text{GTY } 4\text{TX} / 4\text{RX} \text{ (max } 28. 125\text{Gbps)}$	
	$4 \times$ GTH 8TX (max 16. 3Gbps)	
	$4 \times$ GTH 8RX (max 16. 3Gbps)	
	USB3.0 \times 1	
	USB-UART $\times 1$	
	1 Gb Ether(RJ45)	
	DisplayPort 1.2	

Figure 2: M-KUBOS [2] architecture

Figure 5: Hadamard gate evaluation after optimization

References

Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen, K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya, T. Yamamoto, T. Yan, T. Kawakubo, Y. O. Nakagawa, Y. Ibe, Y. Zhang, H. Yamashita, H. Yoshimura, A. Hayashi, and K. Fujii, "Qulacs: a fast and versatile quantum circuit simulator for research purpose," Quantum, vol. 5, p. 559, oct 2021. [Online]. Available: https://doi.org/10.22331%2Fq-2021-10-06-559

K. Iizuka, H. Takagi, A. Kamei, K. Hironaka, and H. Amano, "Power analysis of directly-connected FPGA clusters," in 2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS), 2022, pp. 1–6.