
Since its inception in 2011, RISC-V has experienced tremendous growth, resulting in numerous free and 
open-source processors based on its instruction set. RISC-V is increasingly used in various devices like IoT, 
wearables, and AI, creating a demand for multicore platforms built with RISC-V cores. While combining 
different RISC-V cores for specific applications seems ideal, it's challenging because most open cores lack 
features needed for efficient multicore design. This research proposes a hardware/software co-design 
solution to overcome these bottlenecks, significantly improving performance of multicore system.

Multiple level cache system:
• L2 Cache → External data cache.
• Shared Memory → Internal shared data/Thread info.
• Local Memory (LMEM) → Tightly coupled local memory.
Local switch: Allows LMEM’s access without delay.
• From RISC-V
• From tightly coupled accelerator (Accel.).
• From System Bus (SBUS).

Resource/Overhead LUTs Regs
System
 |− RISC-V core*
 |−− Local switch
 |− Shared memory

55,642
11,291

104
143

27,596
5,568

118
186

• Thread info/shared data are stored in Shared Memory.
• Maximize Local Memory Utilization.
• Reduce shared resource usage (cache, bus).
• Reduce Local Memory replacement.

Figure 1 Proposed Thread-enabled Multicore RISC-V System

Figure 2 Resource overhead (LUTs)
* Resource consumption for only one Rocket core (RV32-IMAFC)

Figure 3 Dataflow for Strassen’s Matrix Multiplication Algorithm

Hardware/Software 
Co-design of Thread-enabled 
RISC-V-based Multicores

[1] Yuta Nojiri, et al.: A Design of Multithreaded RISC-V 
Processor for Real-Time System, CANDARW, Nov. 2023.
[2] Abdallah Cheikh, et al.: Klessydra-T: Designing Vector 
Coprocessors for Multi-Threaded Edge-Computing Cores, 
IEEE Micro, Jan. 2021.


