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[3] 8-bit and 32-bit in 0.18μm CMOS.

Power consumption of the SoCs at 32-kHz 

and different VDD.
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System Architecture
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Core Architecture
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Measurement and Results
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Measurement and Results

Area distribution of SoCs.

• 16 registers = 28% core footprint

• SERV-32E is approximately 17% 

smaller than SERV-32I
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Measurement and Results

SERV SoCs power breakdown:

SERV-32I is 1.5 times more 

energy than SERV-32E
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Measurement and Results

Table I. ASIC Implementation in comparison.
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Conclusions

This paper presents two SERV serial architecture SoCs based on the RISC-

V specification, SERV-32I, and SERV-32E. We have shown how 

architectural heterogeneity affects area overhead and power consumption. 

In terms of area, cutting 16 registers in the RF reduces the footprint by 

28% of the processor. In terms of power consumption, the power 

consumption of the SERV-32I is about 1.5 times higher than that of the 

SERV-32E in the reverse-body bias region. 
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