
Some Internet of Things applications require data processing and communication capabilities. Even when power sources are limited, these capabilities need to be granted, such as

energy harvesting and batteries. The architectural heterogeneity can be dissected to shed light on the trade-offs in the RISC-V design to achieve a minimal processor. In this paper,

we present two System-on-Chips, SERV-32I and SERV-32E, based on low power and low footprint RISC-V processor, due to serial architecture and leakage control using the

tension on the body exploiting the characteristics of the technology. As for the core area, SERV-32E is 28% smaller than SERV-32I while achieving negligible performance loss. The

Dhrystone benchmark achieved by the SERV-32I is 1.11 DMIPS, while that of the SERV-32E is 1.05 DMIPS. The experiment results show that energy per cycle in reverse-body

bias can be reduced to 3.53pJ/cycle and 2.32pJ/cycle with a 0.29-V power supply for SERV-32I and SERV-32E, respectively.
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IV . MEASUREMENT RESULTS

Fig. 1: SERV System on Chip

Fig. 5: Area distribution of SoCsFig. 4: SERV Active Energy per cycle at different VDD.
Fig. 3: SERV SoCs Power breakdown at VDD = 0.4V 

and different Bias Voltage..

Table I. ASIC Implementation in comparison.
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Fig. 2: SERV SoCs Micrograph.

SERV-32I and SERV-32 are compared side-by-side in terms of power 

per cycle, power consumption, and area distribution. They are also 

compared with other state-of the-art implementations. The SERV-32E's 

energy per cycle is the lowest of all the implementations compared.
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[4] SOTB 65nm 0.22 13.3 0.049 50.1k 14

[5] FDX 22nm 0.42 4.47 105.4 - 18

[6] FDX 22nm 0.55 6.3 6.6 - 40

[7] FDSOI 28nm 0.4 3.3 8.4 - 40

[8] FDSOI 65nm 0.5 13.4 - - 0.00207

SERV-32I SOTB 65nm 0.29 3.53 0.007 - 0.011

SERV-32I SoC SOTB 65nm 0.29 6.97 0.03 84k 0.011

SERV-32E SOTB 65nm 0.29 2.37 0.0024 - 0.01

SERV-32E SoC SOTB 65nm 0.29 3.11 0.0037 70k 0.01


