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BACKGROUND

INTRODUCTION

Quantum computing is already in practice. As part of the 0> Gate-model quantum computing use quantum , :
Feasibility Studies on Nexct-Generation Supercomputing Infrastructures, i > circuits to describe the calculation. Inside a qo ﬂ . ¢ '

we want to investigate and study the current status of quantum circuit, various quantum gates are a - H §
Quantum Computing, especially the performance of the applied to different qubits. These gates - J- : a '

popular gate-model quantum processors, and the possibility - manipulate the qubits in complex computing . ’

of using 1ts power to augment the next ﬂagship ------------ i spaces, using superposition and entanglement to )

supercomputing system. To summarize: achieve exponential speed-up for traditionally hard tasks, like prime factorization.

* Survey current gate-model quantum processors Currently, the hardware implementation of quantum processors is still imperfect. One

* Evaluate programmability on different cloud platforms - of the major problem i1s that they are easily affected by external noise, causing the

* Investigate usability with practical quantum algorithms  |+> output to distribute around the correct answer. To mitigate the problem, quantum

* Test performance, especially their noisy output fidelity 1> circuits are usually executed many times to collect the high-probability output.

METHODOLOGY

We surveyed 9 publicly available gate-model quantum processors on the amazon AWS and |
the IBM Q cloud platform, listed belowr: |
1. Harmony by IonQ, 11 qubit (lon-trap) |
2 . Lucy by Oxford Quantum Circuits, 8 qubit (superconducting) |
3. Aspen-M-3 by Rigetti, 79 qubit (superconducting)
4.1ibm nairobi by IBM, 7 qubit (superconducting) : 25 | DI
|
|
|
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5.1ibm oslo by IBM, 7 qubit (superconducting)
6.1bmg belem by IBM, 5 qubit (superconducting)
7.1bmg lima by IBM, 5 qubit (superconducting)
8.1bmg manila by IBM, 5 qubit (superconducting)
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Here 1s how the figures in the result section are constructed. First, a noise-free simulation
of the circuit was performed, generating the expected output distribution in grey. Then

9.1bmg quito by IBM, 5 qubit (superconducting) | the circuit was executed on the real processor, producing a noisy output distribution in
The test circuits are picked from the QASMBench opensource benchmark suite, according , blue. The two distributions are merged to give an intuitive comparison of how noise
to the processor’s topology and computation complexity. , affects the processor’s performance.

RESULT

Due to space limitations, only the top-5 simplest and most complex quantum circuits are displayed here. The first row are the top-5 simplest algorithms: 1. Deutsch algorithm, 2.
Quantum teleportation, 3. entangling swapping gate, 4. Grover’s algorithm, 5. Learning parity with noise. The second row are the top-5 most complex algorithms: 1. Controlled-swap

gate, 2. Quantum repetition code encoder, 3. Quantum ripple-carry adder, 4. Variational ansatz with a linear-swap network, 5. Variational quantum eigensolver with UCCSD.

Harmony by lonQ, 11 qubit (ion-trap) I Lucy by Oxford Quantum Circuits, 8 qubit (superconducting) I Aspen-M-3 by Rigetti, 79 qubit (superconducting)
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ibm nairobili by IBM, 7 qubit (superconducting) 1bm oslo by IBM, 7 qubit (superconducting) ibmg belem by IBM, 5 qubit (superconducting)
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ibmg lima by IBM, 5 qubit (superconducting)
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ibmg quito by IBM, 5 qubit (superconducting)
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* Current gate-model quantum processors can handle simple quantum computations * Qiskit contributors, Qiskit: An Open-source Framework for Quantum Computing
with reasonably high fidelity. (2023). https://doi.org/10.5281/zenodo.7897504

* Due to the random nature of some quantum algorithms (e.g., Quantum * IBM Quantum (2021). https://quantum-computing.ibm.com/
teleportation), the performance might not be consistent across different quantum * Amazon Web Services, Amazon Bracket (2020). https://aws.amazon.com/braket/
Processors. * A.Li S Stein, S. Krishnamoorthy, and J. Ang, Qasmbench: A low-level gasm

* Complex algorithms that use many CNOT connections, like the Variational benchmark suite for NISQ evaluation and simulation (2022).

algorithms, are still challenging for current quantum processors to compute.
* With active research on Quantum Error Correction and better hardware
implementation technologies, the future of quantum computing is extremely

promising.
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