オープンソースEDAによるLSI開発(LSI事業の民主化を目指して)

- 1. ロジックリサーチの紹介
- 2. オープンソースEDAを使ったきっかけ EDA遍歴、EDAツールの稼働率とコスト分析
- 3. ロジックリサーチでのオープンソース活用 オープンソースEDAと商用EDAの比較と使用実績 Klayoutとxschemの画面の紹介 ミニマルTEGの開発での実績(LayoutとLVS) Qflowの概要紹介 ロジックIC開発(RISC-Vチップの例、OpenRAMの例) アナログIC設計例(アンプ、コンパレータ、DAC)⇒コンパレータとDACは、作成中
- 4. 今後の計画

参考情報

ミニマルファブの紹介

ロジックリサーチの研究情報

- ☆再配線によるLSI開発(研究成果)
- ☆マスター回路を使ったLSI開発案

株式会社ロジック・リサーチ

Think Solution for the Customer's Success!

会社概要

代表取締役社長:土屋 忠明

資本金:4578万円 設立:1992年12月

事業内容:LSIの開発・製造・販売

本社:福岡市早良区百道浜3丁目8番33号

福岡システムLSI総合開発センター

電話番号:092-834-8441 FAX番号092-834-8442

E-mail: info@logic-research.co.jp

WebPage: http://www.logic-research.co.jp

[加盟団体]

九州半導体・エレクトロニクスイノベーション協議会(http://www.siig.jp) TOPPERS プロジェクト(http://www.toppers.jp/index.html) ミニマルファブ推進機構(http://www.minimalfab.com/) 日本電子デバイス産業協会(http://www.nedia.or.ip/)

沿革

1992/3 半導体メーカーからの受託設計(通信用GA)を開始

1993/4 受託設計を開始

1995/3 LSI受託設計へ移行、通信機器メーカーからLSI受託設計 1998/4 経済産業省の補助金により再構成可能LSIの研究開始

2000/5 半導体ファブレスメーカーのビジネスモデル開始

2001/3 自社ブランド製品量産開始(大手メーカーに採用)

2005/4 カスタムIC開発が20品種超 2006/12 ファブレスASIC事業に移行

2007/9 0.18umプロセス製品を初導入

2007/12 H8組込みASICの開発完了 2007/12 Flash組込みASICの開発着手

2010/6 ファブシステム研究会でミニマルファブの研究開発スタート

2011/1 SH4組込ASIC開発完了

2012/4 ミニマルファブ技術研究組合に参加

2012/8 ルネサスエレクトロニクスとCMOS GAのライセンス契約締結

2013/4 HD-PLCアライアンス加盟

2014/9 EOLマイコン(三菱電機製) の量産出荷スタート

2014/12 EOLマイコン (H8)の量産出荷スタート

2015/4 EOL Gate Array(NEC-9HD)の量産出荷スタート

2015/9 ISO9001/14001の取得

2016/12 EOLマイコンの量産出荷スタート

2017/10 EOL(マイコン、GA)開発スタート

2018/1 EOLマイコン(M32R)開発スタート

2018/10 ミニマルファブによるEOL対策研究開発

2019/11 EOLマイコン (H8, M32R)ES出荷

oyonashi Oren Platform for Embedded Real-time Systems 一般社団法人 日本電子デバイス産業協会

事業ロードマップ(創業から、現在、将来)

1992年 1995年 2000年 2005年 2010年 2015年 2020年

通信用GAの受託設計

☆E1/J1通信処理GA(回路図) ⇒FJオリジナルEDA

☆ATM通信処理GA(HDL設計) ⇒ModelSim ☆SDH通信処理GA(HDL) ⇒ModelSim

☆FEC(誤り訂正)ASIC ⇒ModelSim, Design Compiler

★VDSLモデムSOC ⇒ModelSim, VCS, Design Compiler、SpyGlass

☆iBurst通信用SOC検証 ⇒ModelSim, Matlab、Scilab、SpyGlass, Design Compiler

画像処理ASICの受託設計

☆JPEG2000コア開発

★LCD/CCDインタフェース ⇒ModelSim, VCS, Design Compiler、RTQ ★FOMA用ASSPの部分設計 ⇒ModelSim, VCS, Design Compiler、RTQ ★MPEG4エンジン設計 ⇒ModelSim, VCS, Design Compiler、RTQ ★画像補正回路設計 ⇒ModelSim, VCS, Design Compiler、RTQ ★カーナビASICの設計&検証 ⇒VCS, NC-Verilog, Design Compiler、RTQ

⇒ModelSim, Design Compiler, Astro, Calibre

カスタムLSI

★FAX用パネル制御ASIC(累計出荷3900万個)
 ★FAX用メカ制御ASIC(累計出荷150万個)
 ★GBルーター用FPGA置き換え(累計出荷4万個)
 ★FAXモデム用ASIC(累計出荷300万個)
 ★H8組込みASIC(量産準備)
 ★ODD用DAC(累計出荷250万個)
 ★インクジェットドライバIC(累計出荷30万個)

<u>半導体EOLビジネス</u>

☆H8, SH4混載ASICによるEOL対応

☆ルネサスエレクトロニクス CMOS GAのライセンス取得

ASIC.com ビジネス

☆ minimal Fab による 少量多品種・短TAT生産

☆ 究極の1個流し生産

☆ 納期:1 week 価格:FPGA相当

2021/4/23

3

カスタムLSI開発&販売事業

例)

- ·FAX用制御IC
- •Panel制御、5V,3k Gate

EOL製品の再開発

旧い製品(GA, 汎用品)で生産中止予定品を再開発します。

セカンドソース

コストダウンが難しいLSIを独自手法にて再開発します。

例)

- ・8ビット、16ビットマイコン
- •0.35um CMOS GateArray

大手LSIメーカーが苦手な 分野をお引き受けします。

・ハイブリッドICの集積

FPGAの置換

FPGA/PLDを置き換えて コストダウンします。

限量生産品

市場規模が小さな分野でも開発します。先端市場向けや研究開発に最適です。

例)通信処理回路 •300k Gate, 125MHz

Ex. 産業用InkJet Driver 130出力、30V耐圧 Ex. 研究開発用 Display Driver 160出力、60V耐圧

➤ Wafer Fab

- ・IP調達 (IPカスタマイズ)、MP(量産/試作)
- ・MPW(シャトル便による試作)

➤ Package & Test

内藤電誠グループ

MP(量産/試作)、少量試作・開発、カスタムリードフレーム Multi-Chip-PKG

➤ Design Partner

株式会社シスウェーブ(アナログ、マイコン) メイビスデザイン株式会社(メモリ、マイコン 九州電子株式会社(アナログ) アレックス電工株式会社(アナログ)

豊富な設計開発経験

- ·通信系LSI·FPGA→ASIC化
- ·画像処理LSI·CPU

·最適化設計

・安定した量産立上

安定・長期供給

- ・ドライバー系IC(LCD, InkJet, Motor)
- ・アナログフロントエンド etc. 70種以上

・最適ファブ(Wafer/PKG)選定

・試作、評価による初期品質の確保

・徹底的した品質と納期管理による

大学(研究室)&公設研究機関

>Partner

EMEMO(Y OPTROMの調達

IP開発 (IPのカスタマイズ) **Gate Array Solution** Design Partner

CPU IPの供給 EOL製品の移管(協議中)

RENESAS ダイヤモンド電機株式会社 DIAMOND ELECTRIC

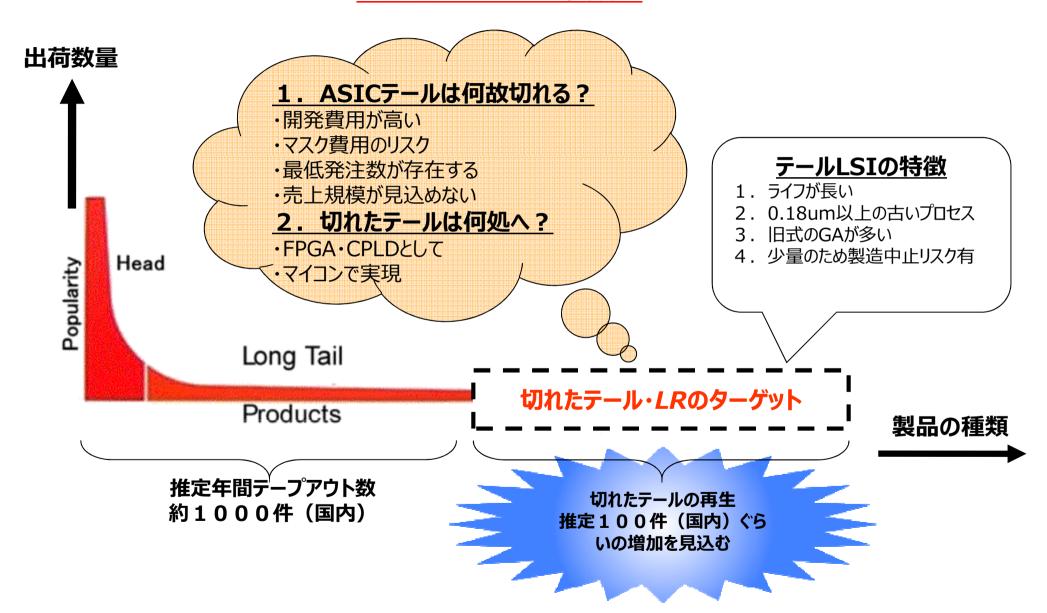
少量半導体製品事業

Tech Idea

高機能アナログIP開発

- ・最適設計(必要最小限の機能)
- ・最適なプロセス(製造し易さの追求)
- ・多品種・少量の用途に柔軟に対応
- ・継続的な生産・供給

お客様製品



ASIC事業

ロングテール ASICを実現!

研究開発(1995年~2015年)

中小企業の利点を生かし、大学、公設機関と 公的助成を活用して研究開発を実施

特定用途向けCPU(1500万円)

発光道路鋲向け低消費電力CPU 九大)村上教授と共同研究 ミニマルファブ用EDA(1500万円) ハーフインチWaferを用いた 少量生産向けLSI 産業技術総合研究所と共同

レチクルフリー露光技術(2000万円) LCDパネルを使った再利用可能マスク 熊大と共同研究、 熊本地域結集型共同研究開発 H8組み込みASIC(LRCS18033) SH4組み込みASIC(LRCS18050) Digital制御アナログIC(LRCT25048)

RTOSのLSI化(1500万円) リアルタイムOSの応答性を向上させる 九大)村上教授と共同研究 <u>薄型IC開発(1500万円)</u> バイパスコンデンサをPKGに内蔵したIC 福岡県工業技術センターと共同研究

低コストASIC製品(LRCT50039) ドライバIC(LRCM50019) 汎用品のカスタム化(LRCM50002)

再構成可能LSI(1.5億円) ビットスライスCPUをアレイ状に配置 九大と共同開発、特許取得 事業化資金不足で開発断念 CMOS無線LSI 半導体に整合回路実現 九大と共同研究、特許取得 組込RubyCPU(1500万円) 、組込RubyとRTOSによる開発期間短縮マイコン 九州工業大学、名古屋大学と共同研究

電流センサー開発(2500万円) スマートメーター向け電流センサーと制御ICの開発、 イーテック㈱&九州工業大学と共同開発

MIMO装置向けLSI開発(2500万円) スモールセル向けWifi基幹装置向けモジュール開発 PicoCera(株)&九大と共同開発

1995年

2000年

2005年

2010年

2015年

研究開発(2016年~)

ミニマルファブ用EDA(1500万円) ハーフインチWaferを用いた 少量生産向けLSI 産業技術総合研究所と共同

新材料を使った半導体デバイス ミニマルファブを活用し、Si以外の 材料を使ったデバイス開発 プロセッサ開発 新材料と非ノイマンアーキテクチャに よるプロセッサの研究

ミニマルハイブリッドプロセス(75百万円) 配線工程のみミニマルファブ化する 産総研九州と共同研究

ミニマルEDAクラウド Anagix殿と共同でオープンソースを 活用したクラウド型EDAツールを整備

> ミニマル生産管理 ミニマル装置間での製造データ 流通システムの開発

少量生産半導体デバイス事業

20016年 2020年 2025年 2030年 2035年 2040年

2. オープンソースEDAを使ったきっかけ(開発費用におけるEDAの割合)

IDM専用CAD

HDLシミュレータ (Verilog/VHDL Sim)

回路合成 (Design Compiler)

自動配置配線(EOL製品)

福岡システムLSI総合開発センターのEDA (高位合成、回路合成、SPICEシミュレータ、HDLシミュ レータ、レイアウト設計、レイアウト検証)

ロジックリサーチのEDAツール史

オープンソースEDAの調査と活用 (NS-TOOL, NGSPICE, Xyce, Klayout, Glade, Klayout, YOSYS, GlayWolf, Qrouter, ALLIANCE) アナログICの仕様検討(NS-TOOL) デジタルICのチップ面積検討(Qflow)

1992年 1995年 2000年 2005年 2010年 2015年 2020年 2025年

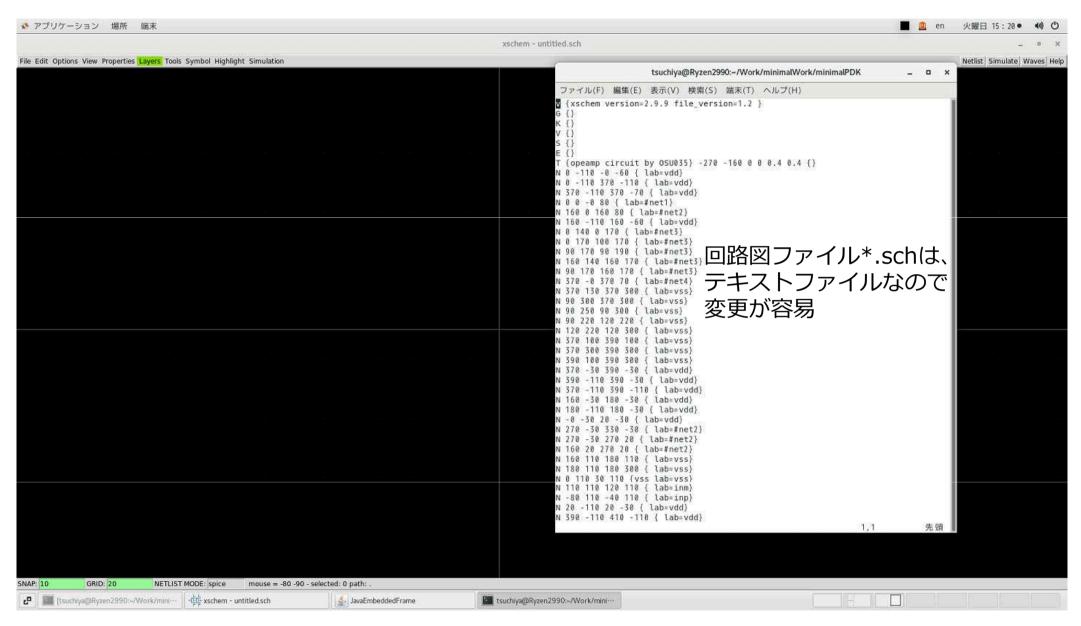
2. オープンソースEDAを使ったきっかけ(開発費用におけるEDAの割合)

EDA価格(Time Base Lisence) HDLシミュレータ(100万円/年間) 回路合成(1000万円/年間) 自動配置配線(1000万円/年間) SPICEシミュレータ(100万円/年間) レイアウト設計(500万円/年間) レイアウト検証(500万円/年間) 合計費用=3700万円

1日の費用=3700÷225日⇒16万円

EDA稼働(5品種開発) HDLシミュレータ(100日・人/年間) 回路合成(25日・人/年間) 自動配置配線(50日・人/年間) SPICEシミュレータ(100日・人/年間) レイアウト設計(100日・人/年間) レイアウト検証(50日・人/年間)

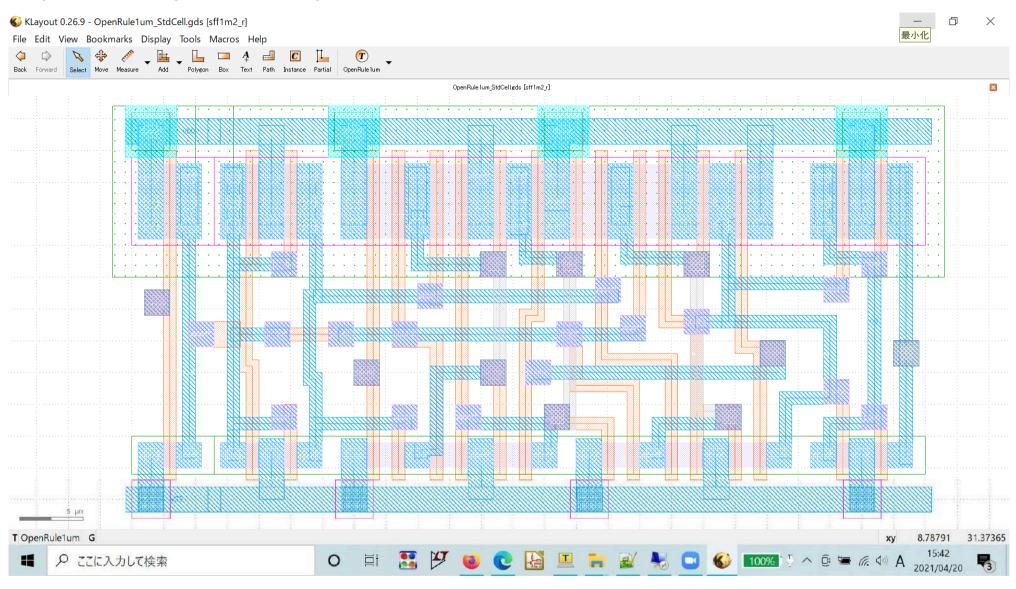
1品種のEDA費用=3700÷5⇒740万円



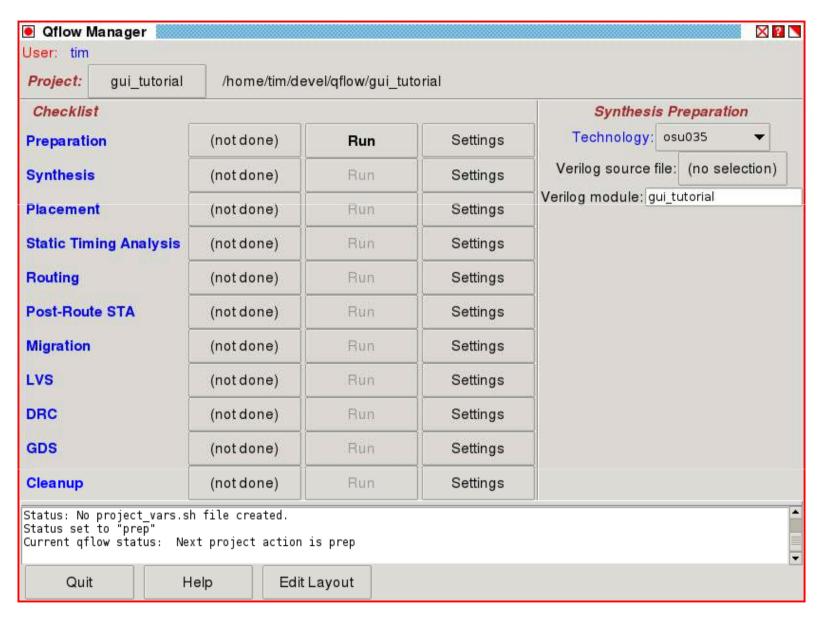
3. ロジックリサーチでのオープンソース活用事例

オープンソースEDA一覧

開発ターゲット	開発工程	商用EDA	OSS-EDA	活用事例の一部	
アナログIC開発	回路図エントリ	Virtuso/ISMO	Glade(回路図、レイアウト、 レイアウト検証)、Klayout(レイアウト)、NGSPICE(シ ミュレーション)、 Xyce(シミュレータ)、	ミニマルファブ用TEG設計	
	回路検証	HSPICE, Specture		IO Cell 配線確認TEG	
	レイアウト設計	Virtuso/ISMO, Laker			
	レイアウト検証	Calibre	Xschem(回路図エントリ)		
デジタル回路設計	RTL設計	EDITOR	NotePad++, Atom	RISC-Vチップの合成、配置、配線、STA	
	回路検証	HDLシミュレータ	Icarus	0.5um StdCell 0.35um Std Cell	
	回路合成	Design Compiler, Genus	Qflow(Verilog、自動配置		
	レイアウト設計	Encounter, IC Compiler	一配線、STA) Alliance(VHDL)		
	レイアウト検証	Calibre	Glade、Klayout		
SOC開発	高位合成	Catapalt	調査中	OpenRAMによる SRAM実験	
	CELL開発	特になし	Openlane, OpenROAD OpenRAM		
	IP開発			CONTROL CONTRACTOR CONTRACTOR	
	システム設計	Co-SIM環境	調査中	0 1564um	
	システム検証			764um	
	レイアウト検証	Calibre	Glade、Klayout		


Xschemの画面と特徴

https://xschem.sourceforge.io/stefan/index.html



Klayoutの画面(Windows版)

https://www.klayout.de/

Qflow

http://opencircuitdesign.com/qflow/

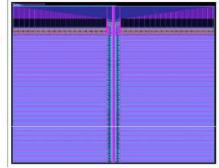
OpenRAM

OpenRAM

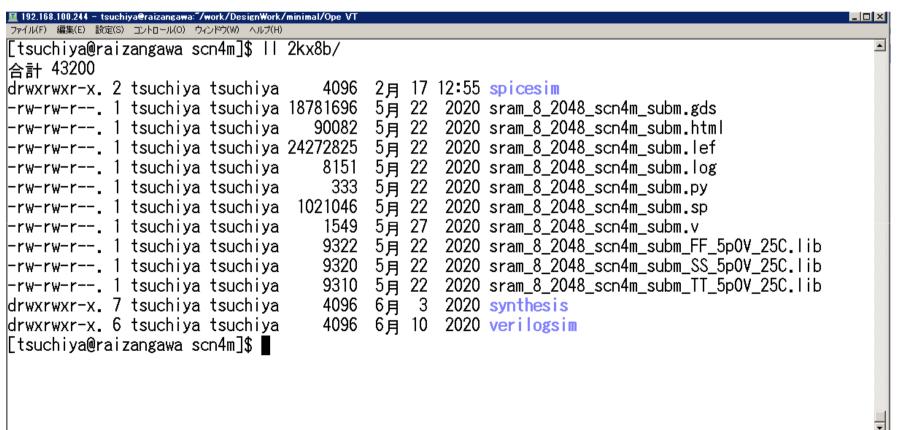
Search

About OpenRAM

The OpenRAM project aims to provide a free, open-source memory compiler development framework for Random-Access Miemories (RAMs). It is a joint development project between University of California Santa Cruz and Oldahoma State University to enable memory and computer system research by creating an open-source compiler infrastructure.

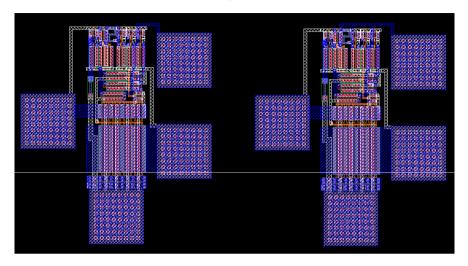

Get the Source Code

Please see our official distribution at:

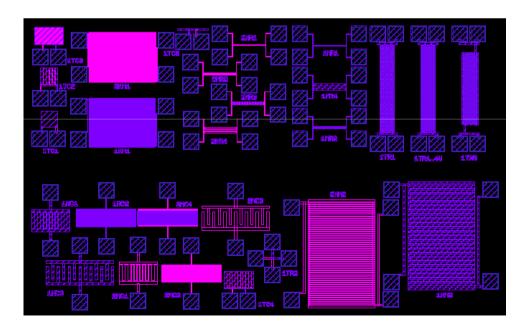

https://vlsida.github.io/OpenRAM/

or clone a copy with:

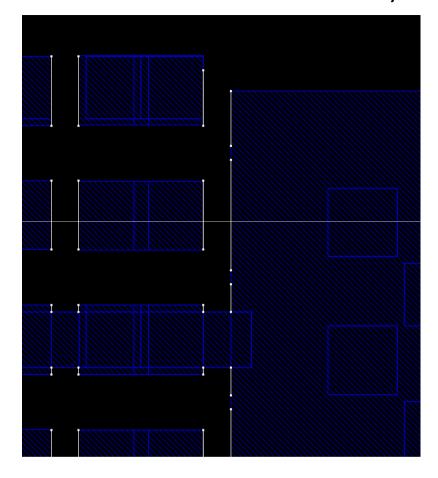
git clone https://github.com/vL5IDA/OpenRAM.git

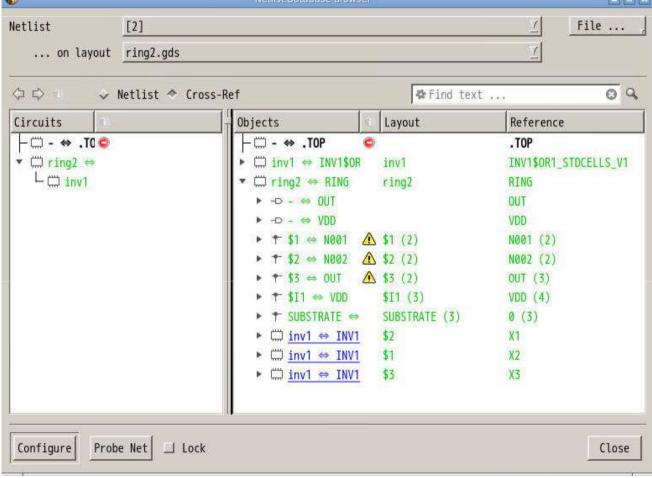


https://openram.soe.ucsc.edu/


ミニマルファブでの試作回路設計での活用

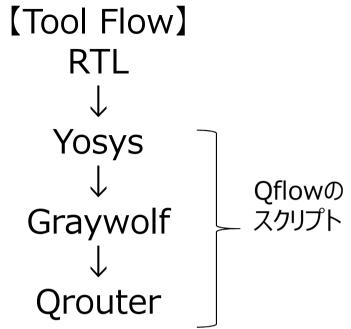
【デジタルIOTEGの設計】


横河SS_SOIにて試作しSPICEモデルパラメータを作成中


【メタル、VIA、層間絶縁膜評価TEGの設計】

M1,M2,VIA (PAD)のレイヤーのみで構成 各TEGの抵抗、容量をはかることにより、それぞれのプロセスの出来を はかることが可能

ミニマルファブ向けPDK開発では、Klayoutでレイアウト設計、LVS, DRC実施


Logic Research Co., Ltd

Digital回路の合成とレイアウト実験 (CUIによる)

```
[tsuchiya@raizangawa~]$ || work/DesignWork/minimal/qflow/coretexMO/
合計 40
                                                                           イアウト結果
                                          9月 25
                                                   2020 layout
drwxrwxr-x. 2 tsuchiya tsuchiya 4096
drwxrwxr-x. 2 tsuchiya tsuchiya 4096 7月
                                               16
                                                   2018 layout05u
                                               25
                                          9月
drwxrwxr-x. 2 tsuchiya tsuchiya 4096
                                                   2020
                                                         og
                                                                          ログ
drwxrwxr-x. 2 tsuchiya tsuchiya 4096
                                          7月
                                                   2018 log05u
-rw-rw-r--. 1 tsuchiya tsuchiya 977
                                          7月
                                                   2018 project_vars.sh
                                           1月
                                                   2019 qflow_exec.sh
-rwxrw-r--. 1 tsuchiya tsuchiya 1062
                                               10
                                                                           実行スクリプト
-rw-rw-r--. 1 tsuchiya tsuchiya 698
                                          7月
                                                   2018 qflow_vars.sh
                                                                           設定ファイル
                                          9月
drwxrwxr-x. 2 tsuchiya tsuchiya 4096
                                               24
                                                   2020 source
                                                                           ソースファイル
drwxrwxr-x. 3 tsuchiya tsuchiya 4096
                                          9月
                                               24
                                                   2020 synthesis
                                                                           合成結果
                                         7月
drwxrwxr-x. 2 tsuchiya tsuchiya 4096
                                                   2018 synthesis05u
[tsuchiya@raizangawa~]$ 🗌
               #!/bin/tcsh -f
               # qflow variables for project /mnt/work/DesignWork/minimal/qflow/coretexM0
               set projectpath=/mnt/work/DesignWork/minimal/gflow/coretexM0
               set techdir=/usr/local/share/qflow/tech/osu035
               set sourcedir=/mnt/work/DesignWork/minimal/qflow/coretexM0/source
               set synthdir=/mnt/work/DesignWork/minimal/qflow/coretexM0/synthesis
               set layoutdir=/mnt/work/DesignWork/minimal/qflow/coretexM0/layout
               set techname=osu035
               set scriptdir=/usr/local/share/qflow/scripts
               set bindir=/usr/local/share/qflow/bin
               set logdir=/mnt/work/DesignWork/minimal/qflow/coretexM0/log
```


Digital回路の合成とレイアウト実験 (RISC-Vコア)

実行時間;~2時間

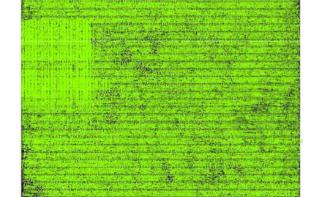
【RTLとライブラリ】 SiFiveの評価用RTL OSU050, OSU035, OSU018

【回路情報】

RISC-V ISA - RV32IMAC

Machine and User Mode with 4 Region Physical Memory Protection

3-stage pipeline with Simultaneous Instruction and **Data Access**


2 Banks of Tightly Integrated Memory System, Peripheral, and Front Ports CLIC interrupt controller with 127 interrupts

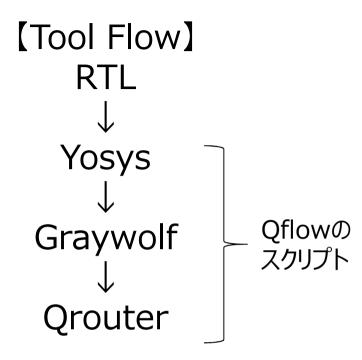
Advanced debug with 4 hardware

breakpoints/watchpoints

2.27/1.46 DMIPS/MHz (Best Effort/Legal)

3.1 CoreMark/MHz

縦横のアスペクトが設定可能



OSU050um

OSU035um

OSU018

Digital回路の合成とレイアウト実験

実行時間;~6時間

【RTLとライブラリ】 SiFiveの評価用RTL OSU035, OSU018

E31 Key Features Fully compliant with the RISC-V ISA specification **RV32IMAC Support** RV32I - 32-bit RISC-V with 32 integer registers Integer Multiplication and Division (M) support Atomic Mode (A) support for high-performance, portable software Compressed Mode (C) support for better code density Machine and User Mode Support In-order, 5-6 stage variable pipeline Advanced Memory Subsystem 16KB, 2-way Instruction Cache Instruction Tightly Integrated Memory (ITIM) option Up to 64KB Data Tightly Integrated Memory (DTIM) support

Efficient and Flexible Interrupts Local interrupts w/ vectored addresses — up to 16

Platform Level Interrupt Controller (PLIC) — 128 interrupts w/ 7 priority levels RISC-V Core Local Interruptor (CLINT) -1 timer, 1 SW

8-Region Physical Memory Protection (PMP)

High performance AMBA Interfaces

2.58/1.61 DMIPS/MHz (Best Effort/Legal)

3.01 CoreMark/MHz

Detailed Power, Performance, and Area (PPA) Information

OSU035um

OSU018

SiFive殿の評価用RTLを問題無く読 めて合成、レイアウトまで出来ました。 Formalityは、行ってませんので合成結果の 正確性は、確認できてません。

OpemRAMによるRAM生成

OpenRAMを使い以下の設定でネットリスト、.lib, LEF, GDSを生成

```
word_size = 4
num_words = 64
tech_name = "scn4m_subm"
nominal_corners_only = False
process_corners = ["TT"]
supply_voltages = [ 1.0 ]
temperatures = [ 25 ]
output_path = "64x4b"
output_name = "sram_{0}_{1}_{2}".format(word_size, num_words, tech_name)
次ページにOpenRAMが生成した仕様書を示す。
```

OpemRAMによるRAM生成

OpenRAMの生成データ

sram_4_64_scn4m_subm.html

Compiled at: 2020-09-01

DRC errors: skipped LVS errors: skipped

Git commit id: 1d8f2a4ad6dea40bab54a49ff68d12b3934782d8

Ports and Configuration

Type	Value
WORD_SIZE	4
NUM_WORDS	64
NUM_BANKS	1
NUM_RW_PORTS	1
NUM_R_PORTS	0
NUM_W_PORTS	0
Area (µm²)	12059

Operating Conditions

Parameter	-
Power supply (VDD) range	1
Operating Temperature	2
Operating Frequency (F)	

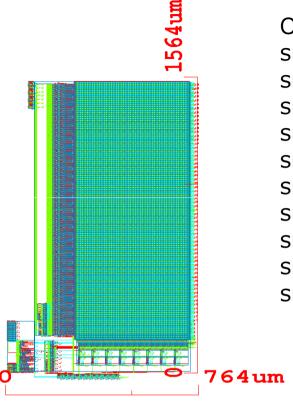
Timing Data

Using analytical model: results

Power Data

Pins	Mode	Power	Units
!csb0 & clk0 & !web0	Read Rising	10.064	mW
!csb0 & clk0 & !web0	Read Falling	10.064	mW
!csb0 & !clk0 & web0	Write Rising	10.064	mW
!csb0 & !clk0 & web0	Write Falling	10.064	mW
csb0	leakage	0.00047	mW

Characterization Corners

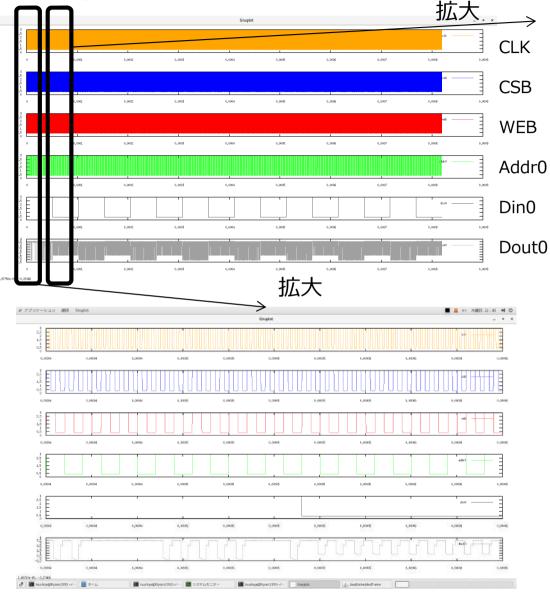

Transistor Type	Power Supply	Temperature	Corner Name
TT	5.0	25	_TT_5p0V_25C.lib
FF	5.0	25	_FF_5p0V_25C.lib
π	1.0	25	_TT_1p0V_25C.lib
SS	5.0	25	_SS_5p0V_25C.lib

Deliverables

Type	Description	Link
.gds	GDSII layout views	sram 4 64 scn4m subm.gds
.html	This datasheet	sram 4 64 scn4m subm.html
.lef	LEF files	sram 4 64 scn4m subm.lef
.lib	Synthesis models	sram 4 64 scn4m subm TT 5p0V 25C.lib
.lib	Synthesis models	sram 4 64 scn4m subm FF 5p0V 25C.lib
.lib	Synthesis models	sram 4 64 scn4m subm TT 1p0V 25C.lib
.lib	Synthesis models	sram 4 64 scn4m subm SS 5p0V 25C.lib
.log	OpenRAM compile log	sram 4 64 scn4m subm.log
.ру	OpenRAM configuration file	sram 4 64 scn4m subm.py
.sp	SPICE netlists	sram 4 64 scn4m subm.sp
.v	Verilog simulation models	sram 4 64 scn4m subm.v

22

OpemRAMによるRAM生成

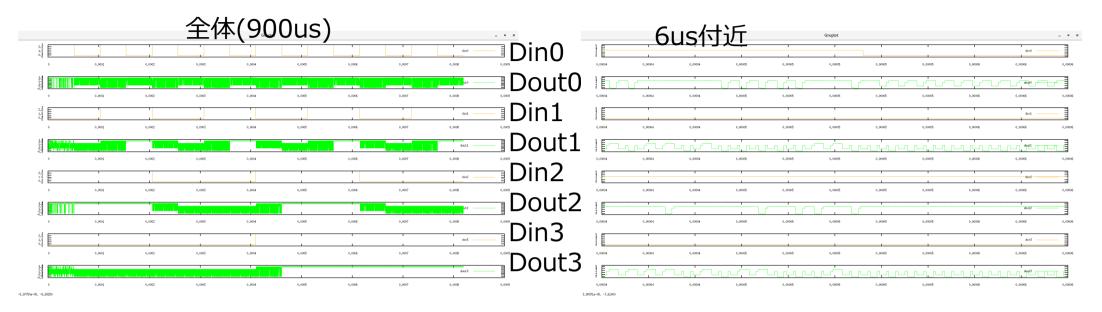

ファンダリーのRAM コンパイラーと同等

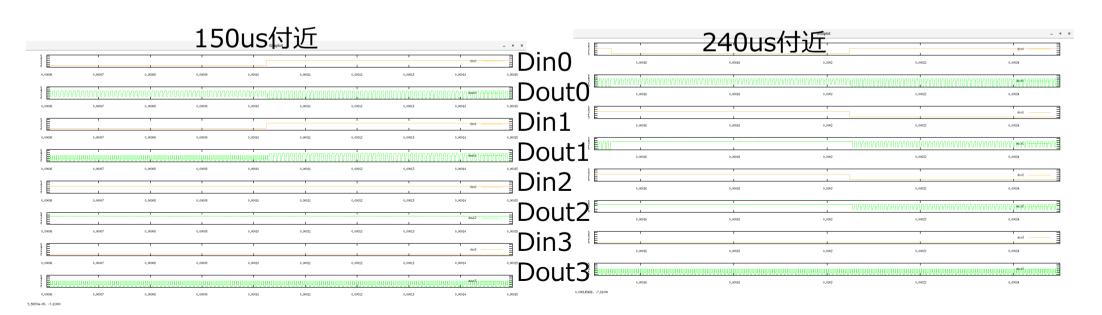

```
OpenRAMで生成されるファイル sram_8_2048_scn4m_subm.gds; レイアウトファイル sram_8_2048_scn4m_subm.html: データシート sram_8_2048_scn4m_subm.lef: 配線用LEFファイル sram_8_2048_scn4m_subm.log: 生成ログファイル sram_8_2048_scn4m_subm.py: 設定ファイル sram_8_2048_scn4m_subm.sp: SPICEネット sram_8_2048_scn4m_subm.v: Verilog シミュレーションモデル sram_8_2048_scn4m_subm_FF_5p0V_25C.lib: 合成用ライブラリ sram_8_2048_scn4m_subm_TT_5p0V_25C.lib: 合成用ライブラリ sram_8_2048_scn4m_subm_TT_5p0V_25C.lib: 合成用ライブラリ
```

【設定ファイル】

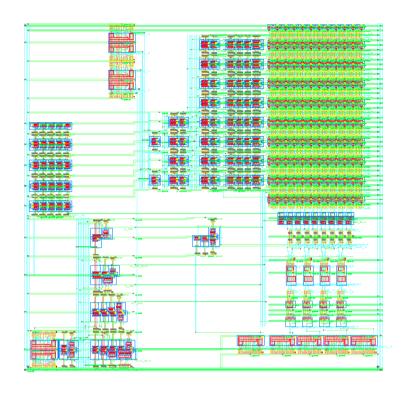
シミュレーション

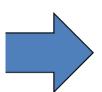
OpenRAMが生成したネットリストを使いXyceでシミュレーション 拡大... なアフリフェー 拡大... カフフリフェー エ

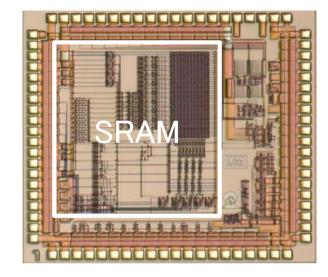




ファンダリーのトランジスタに変換しても動作しそう

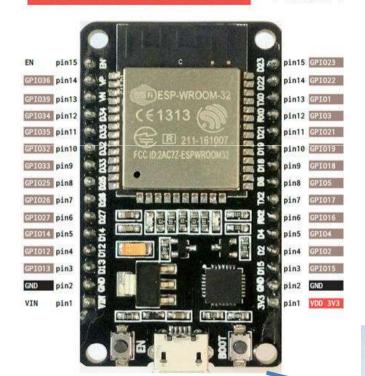

SRAMのシミュレーション

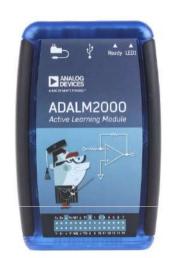

OpenRAMが生成したネットリストを使いファンダリーのトランジスタモデルに変換してXyceでシミュレーション



LSI:

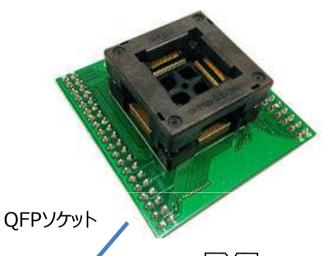
チップ写真

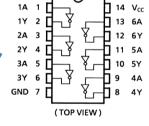

OpenRAMを使いOSU035で合成 レイアウトを1.5倍に拡大(秋田先生) 1.5倍のレイアウトをフェニテックルールでDRC MakeLSIのプロジェクトで試作 動作検証中


SRAMの測定環境

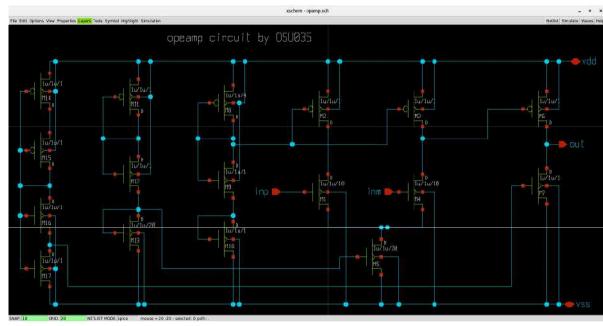
DOIT ESP32 DEVKIT V1

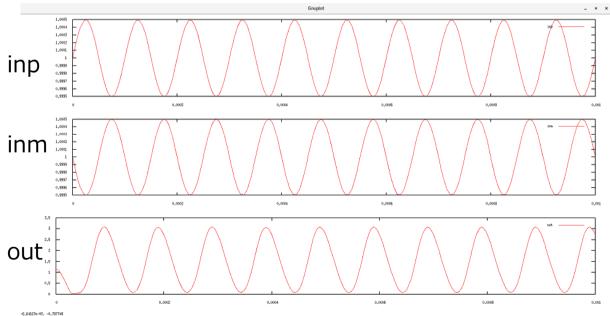
PINOUT




ESP32 DEVKIT: パターン生成 GPIOを使って14信号(CS, WE, CLK, DIN[3:0], ADDR[5:0])生成

ロジッ フアナライザー (16ch)+オシロス コープ (2ch):

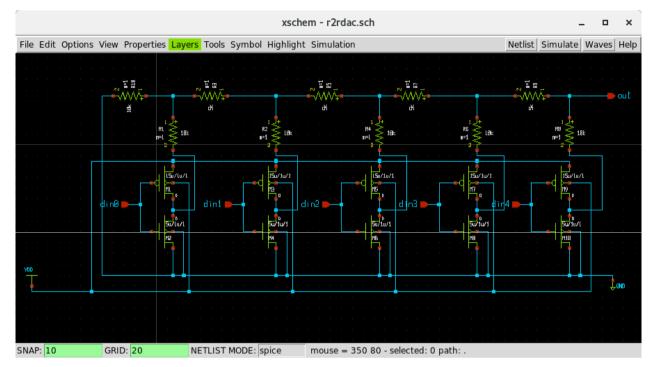

ODDSMIADA



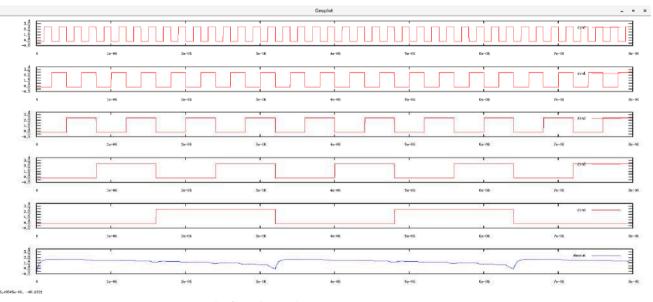
出力バッファ(74HC04) フェニテックの出力バッファが 小さいのでオシロスコープの プローブ容量(~10pF)を 駆動できない可能性有り

アナログIC設計実験 (オペアンプ)

Xschemでの回路図入力


Xyceでのシミュレーション

ネットリスト


M1 N002 N002 N007 vss n l=1um w=1um m=1 M2 vdd N002 N002 vdd p I=1um w=1um m=4 M3 vdd N002 N005 vdd p I=1um w=1um m=1 M4 vdd N002 N003 vdd p I=1um w=1um m=1 M5 N005 inp N008 vss n l=1um w=1um m=10 M6 N003 inm N008 vss n l=1um w=1um m=10 M7 N008 N006 vss vss n l=1um w=1um m=20 M8 N006 N006 vss vss n l=1um w=1um m=20 M9 N004 N006 N006 vdd p l=1um w=1um m=1 M10 vdd N003 out vdd p l=1um w=1um m=100 M11 N009 obn vss vss n l=1um w=1um m=10 M12 vdd N004 N004 vdd p l=1um w=1um m=1 M13 N007 N007 vss vss n l=1um w=1um m=1 M14 obn N001 vss vss n l=1um w=1um m=1 M16 N001 N001 N001 vdd p l=1um w=1um m=1 M17 vdd N001 N001 vdd p l=1um w=1um m=1 M15 N001 N001 obn vss n l=1um w=1um m=2 M18 out obn N009 vss n l=1um w=1um m=10

実験的に作った回路(~3時間) 使用したMOSFETモデルは、OSU035 入力pp値は、0.0005V(500uV) 出力pp値は、2.84634V Gainは、~30dB ファブのSPICEモデルで微調整が必要

アナログIC設計実験 (R2R DAC)

Xschemでの回路図入力

ネットリスト

*R2R DAC.

subckt r2rdac din0 din1 din2 din3 din4 out VDD VSS *.ipin din0*.ipin din1*.ipin din2*.ipin din3*.ipin din4*.opin out

R1 net1 net5 10k m=1

R2 net2 net6 10k m=1

R3 net2 net1 5k m=1

R4 net3 net7 10k m=1

R5 net3 net2 5k m=1

R6 net4 net8 10k m=1

R7 net4 net3 5k m=1

R8 out net9 10k m=1

R9 out net4 5k m=1

M1 net5 din0 VDD VDD p w=15u l=1u m=1 M2 net5 din0 GND GND n w=5u l=1u m=1

R10 net1 GND 10k m=1

M3 net6 din1 VDD VDD p w=15u l=1u m=1 M4 net6 din1 GND GND n w=5u l=1u m=1 M5 net7 din2 VDD VDD p w=15u l=1u m=1 M6 net7 din2 GND GND n w=5u l=1u m=1 M7 net8 din3 VDD VDD p w=15u l=1u m=1 M8 net8 din3 GND GND n w=5u l=1u m=1 M9 net9 din4 VDD VDD p w=15u l=1u m=1 M10 net9 din4 GND GND n w=5u l=1u m=1 .ends

動作している。微調整は、必要

EDA費用は、削減可能

EDA価格(Time Base Lisence) HDLシミュレータ(100万円/年間) 回路合成(1000万円/年間) 自動配置配線(1000万円/年間) SPICEシミュレータ(100万円/年間) レイアウト設計(500万円/年間) レイアウト検証(500万円/年間) 合計費用=3700万円

1日の費用=3700÷225日⇒16万円

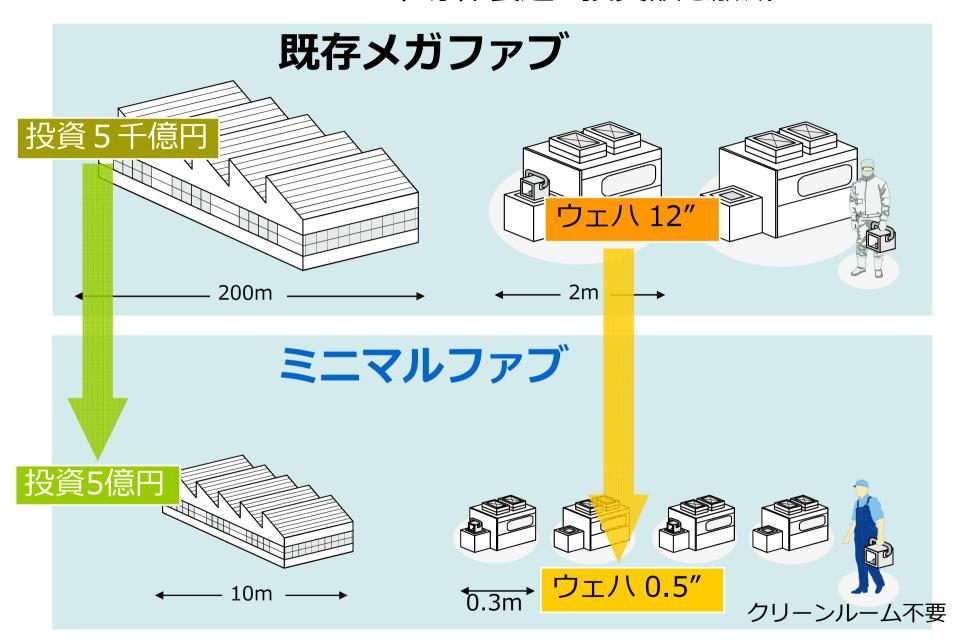
EDA価格(Time Base Lisence) HDLシミュレータ(10万円/1月) 回路合成(100万円/1月) 自動配置配線(100万円/1月) SPICEシミュレータ(10万円/1月) レイアウト設計(50万円/1月) レイアウト検証(50万円/1月) **合計費用=370万円**

商用EDA稼働(5品種開発) HDLシミュレータ(100日・人/年間) 回路合成(25日・人/年間) 自動配置配線(50日・人/年間) SPICEシミュレータ(100日・人/年間) レイアウト設計(100日・人/年間) レイアウト検証(50日・人/年間)

1品種のEDA費用=3700÷5⇒740万円

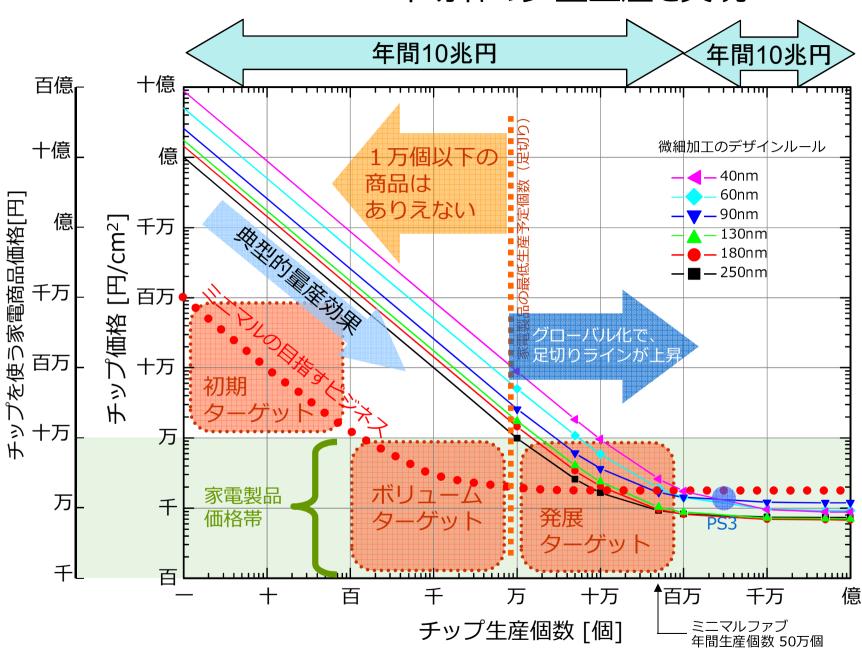
商用EDA稼働(5品種開発) HDLシミュレータ(10日・人/年間) 回路合成(2.5日・人/年間) 自動配置配線(5日・人/年間) SPICEシミュレータ(10日・人/年間) レイアウト設計(10日・人/年間) レイアウト検証(5日・人/年間) 1品種のEDA費用=370÷5=74万円

今後の活動予定


オープンソースだけで簡単なLSIの試作(8ビットマイコン)に挑戦(2021/4Q)ファンダリーのPDKが利用できるように変換手法の開発

【オープンソースEDAの課題】

- ☆マニュアルの日本語化(ミニマルEDA向けで作成中)
- ☆高級言語の合成ソフトウエア(JAVA⇒VerilogやRuby⇒Verilog)の開発
- ☆クラウドでの利用環境
- ☆オープンで使用可能なPDKの準備(SkyWater Open PDK for the 130nm processのような)



半導体製造の投資額を激減

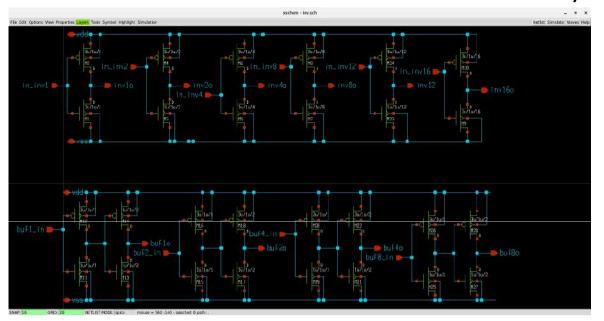
半導体の少量生産を実現

ミニマルファブの紹介

半導体製造装置とWaferを小型化して 少量多品種LSIを短期間で製造する **夢のような技術**

装置は、すべて (45cmx33cmx144cm)サイズ

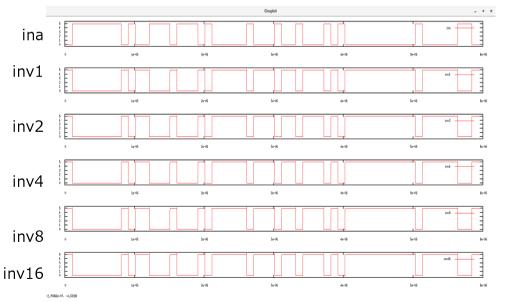
https://www.minimalfab.com/


https://www.yokogawa.co.jp/industries/ssd/minimal-fab/https://www.yokogawa.co.jp/industries/ssd/minimal-fab/https://www.youtube.com/watch?v=6kWS9Wy6WdA

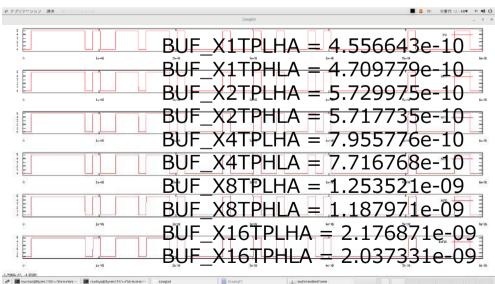
https://www.youtube.com/watch?v=6kWS9Wy6WdA

参照ください

ミニマルファブ向けStandard Cell開発では、XschemとXyceで回路設計とシミュレーション実施中



遅延時間検出

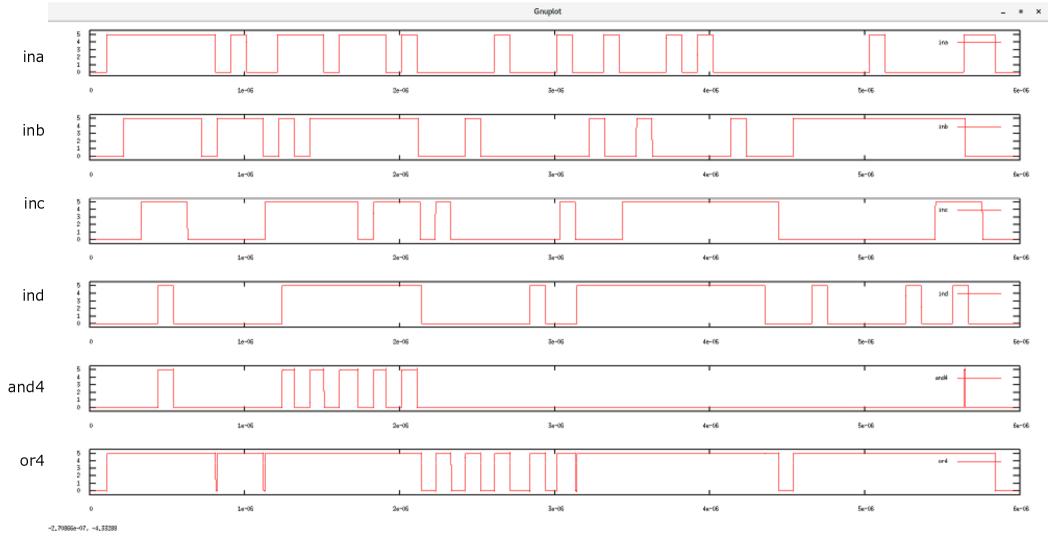

.measure tran ···

INV_X1TPLHA = 1.966268e-10 INV_X1TPHLA = 2.275912e-10 INV_X2TPLHA = 1.613415e-10 INV_X2TPHLA = 1.683656e-10 INV_X4TPLHA = 1.455578e-10 INV_X4TPHLA = 1.392438e-10 INV_X8TPLHA = 1.449618e-10 INV_X8TPHLA = 1.273222e-10 INV_X16TPLHA = 1.590202e-10 INV_X16TPHLA = 1.288945e-10

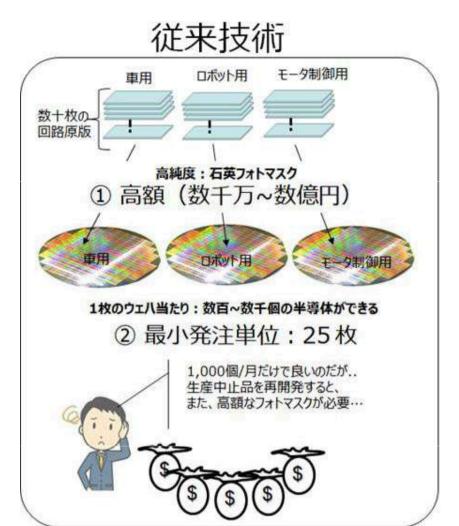
Xschemでの回路図入力

Xyceでのシミュレーション

ミニマルファブ向けStandard Cell開発では、XschemとXyceで回路設計とシミュレーション実施中


遅延時間検出 .measure tran …

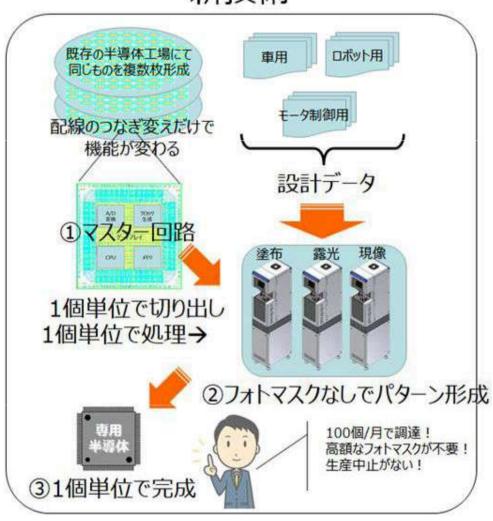
AND4_X1TPLHA = 9.144783e-10 AND4_X1TPHLA = 5.088498e-10 AND4_X1TPLHB = 9.174660e-10 AND4_X1TPHLB = 5.360135e-10 AND4_X1TPLHC = 9.128776e-10 AND4_X1TPHLC = 5.545558e-10 AND4_X1TPLHD = 9.110165e-10 AND4_X1TPHLD = 5.653679e-10


OR4TPLHA = 6.439002e-10 OR4TPHLA = 1.233979e-09 OR4TPLHB = 6.500387e-10 OR4TPHLB = 1.260135e-09 OR4TPLHC = 6.006907e-10 OR4TPHLC = 1.063810e-09 OR4TPLHD = 4.978724e-10 OR4TPHLD = 8.921570e-10

ミニマルファブ向けStandard Cell開発では、XschemとXyceで回路設計とシミュレーション実施中

Xyceでのシミュレーション

開発費用を削減するアイデア(再配線によるLSI製造技術の研究開発)

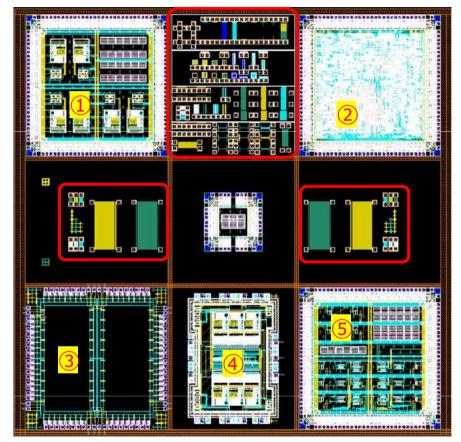


弊社での実績(H8マイコン)

開発費用:4000万円

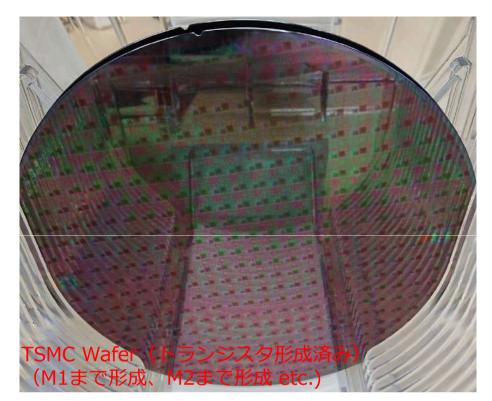
開発期間:2年間

新技術


予想される費用&期間

開発費用:2000万円

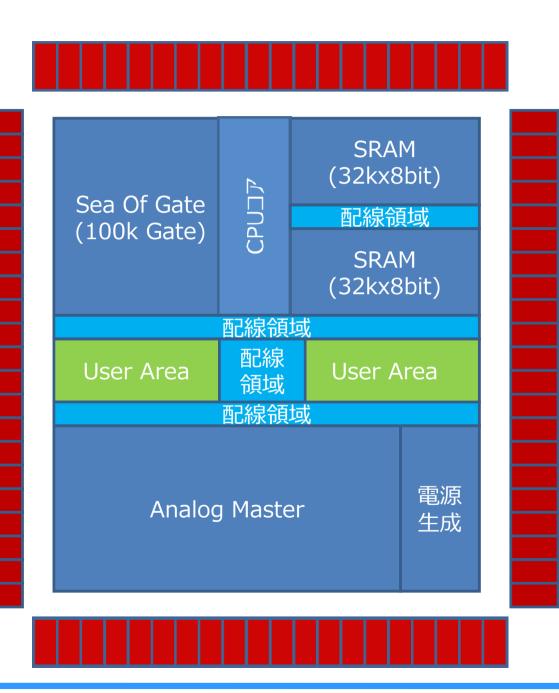
開発期間:8ヶ月


研究開発の成果概要

オープンソースEDAを活用

Process: TSMC 0.35um CMOS Mixed-Signal 3.3V/5.0V

- ※ 試作したデバイスは、全て5V系のデバイスを実装
- ※ 実質、0.5umプロセス相当と同程度
- ※ 赤枠部= 配線出来栄え評価用TEG


番号	サイズ	内容	機能切り替え Layer
1	3.0mm×3.0mm	Rail-to-Rail-OPAMP	M3のみ(ゲイン調整)
2	3.0mm×3.0mm	8bit マイコン	M2,M3で切り替え
3	3.0mm×3.0mm	ロジック・アレイ	M2,M3で切り替え
4	2.8mm×3.0mm	10bit DAC(R2-R) with 6ch	M3のみ(Ch選択)
5	3.0mm×3.0mm	アナログマスター (OPAMP/COMP/LPF)	M3のみ (ゲイン、LPF周波数)

※ M1:Metal 1層目、M2:Metal 2層目、M3:Metal 3層目

CPUとアナログIP、ロジック回路を配線工程のみで接続しICを試作する

シャトルマスターチップ案(検討中)

【仕様概要】

CPU:未定

SRAM: 2kx8x2block(プログラムとデータ)

Sea Of Gate: 100k Gate

Analog: Amp, Comparator, ADC, DAC

電源生成: 3.3V, 1.8V, 1.2Vに対応 IO数: 92本(programmable IO)

電源端子:固定

チップサイズ: 4mm x 4mm固定

【IPについて】

CPUコア: 未定

SRAM: SRAMコンパイラーで生成可能 Sea of Gate: ロジック・リサーチで準備中

Analog:ロジック・リサーチで準備中電源生成:ロジック・リサーチで準備中

このプロジェクトに興味がある人は、 tsuchiya@logic-research.co.jpに 連絡ください。