

AI: scale from Edge to Server with RISC-V and Linux

JUNE 8TH 2020, 6PM ISRAEL TIME

3rd RISC-V Israel Virtual Meetup

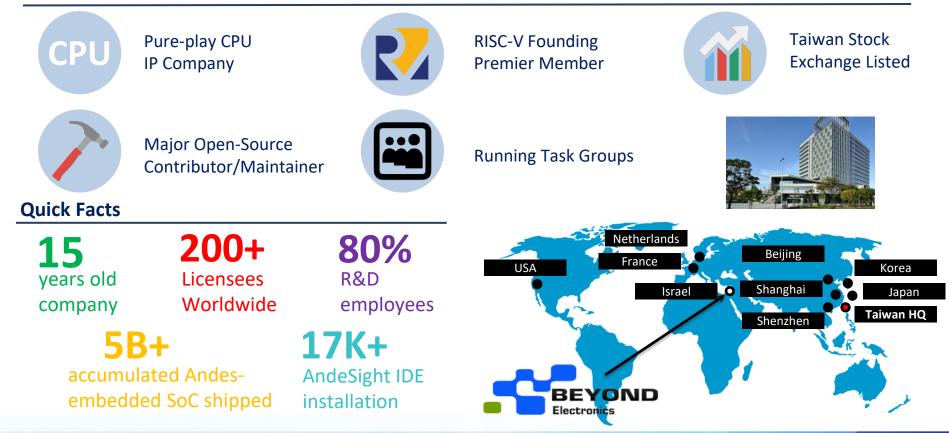
Florian Wohlrab RISC-V Ambassador & Sales Manager

8. June 2020

Driving Innovations[™]

Agenda

- Who is Andes Technology?
- Where is RISC-V used, sample applications
- V-Series: Vector for everyone
- Closer look on our RISC-V Cores



ANDES

At A Glance

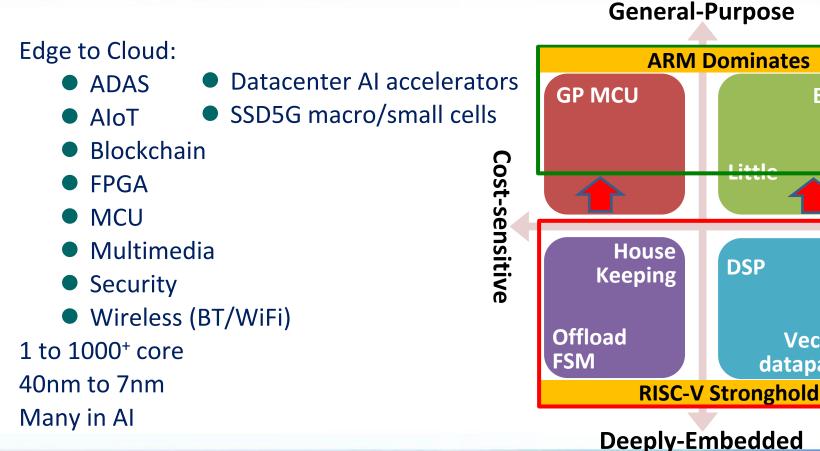
Taking RISC-V® Mainstream

ANDES

Active Roles in RISC-V International

RISC-V Market adoption and usage examples

Taking RISC-V[®] Mainstream


RISC-V Adoption: Applications

Taking RISC-V[®] Mainstream

General-Purpose

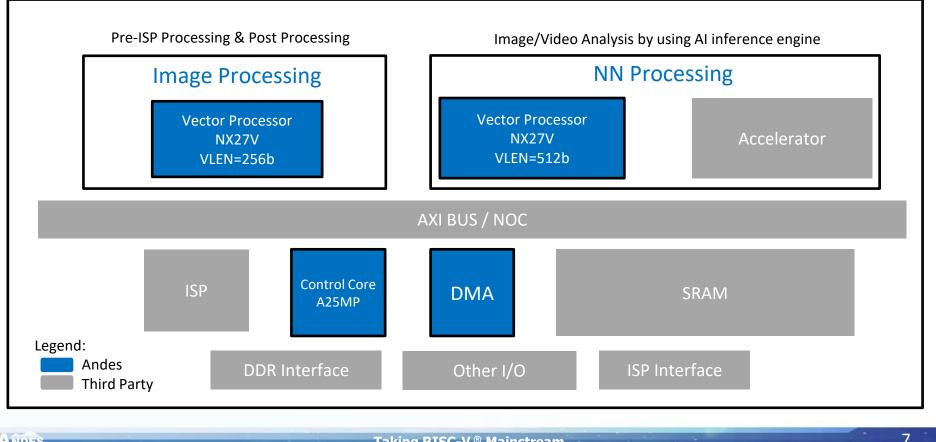
1 ++ | -

DSP

-confidential-

ANDES

Performance-driver


6

Big

Vector

datapath,

Example of Edge Computing – Vision Processing

ANDES

Andes RISC-V on Audio product

- D25F on LE Audio(BLE 5.2) for True Wireless Earbuds and Hearing Aids
 - Customer Tape out already!

This product will be the one of the first SoCs supporting both of LE audio and Classic Audio

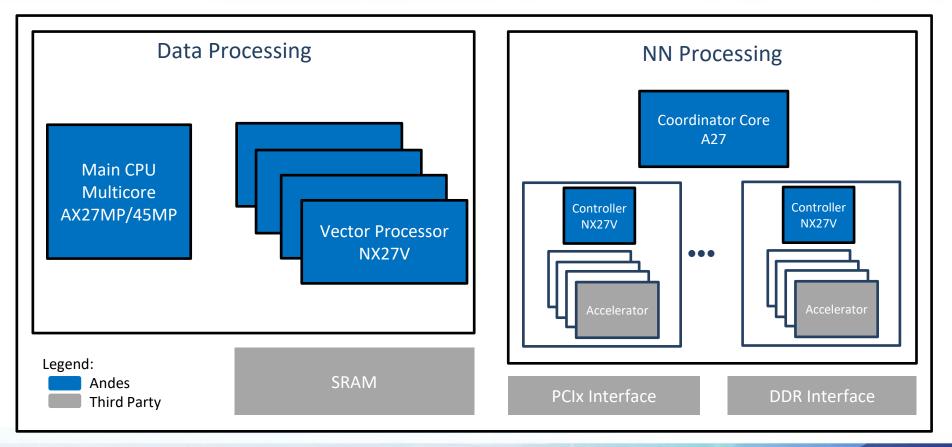
Bluetooth Baseband and Audio Subsystem

LC3 codec - high quality, low power LE Audio/BLE 5.2 – Multi-Stream, Broadcast Audio

ANDES

Application CPU

Power Efficient – Excellent PPA Mature Ecosystem – Support various RTOSs RISC-V DSP Extension – outstanding performance DSP library DSP/AI Accelerator


DSP Algorithm for Noise and Echo Cancelation Machine Learning for Key Word Spotting

Example of Cloud Computing - Datacenter

ANDES

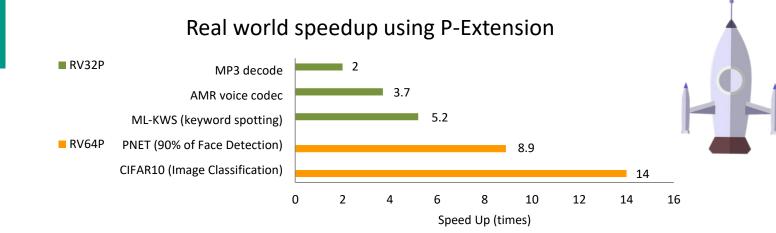
RISC-V Added Value and contributed extensions

Taking RISC-V[®] Mainstream

Andes Added Value in RISC-V

Andes extensions to RISC-V

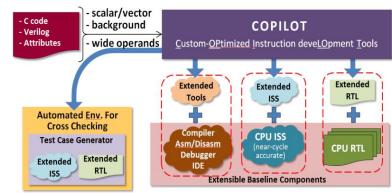
- Baseline ISA extension to speed up memory access and branches
- CoDense to reduce code size (12% better measured by GCC)
- PowerBrake to save power by stalling pipeline
- StackSafe HW stack protection
- vPLIC vectored dispatch and preemption(reduce 57% of latency)


- Powerful features to differentiate your products
- Create competitive edge for your systems

RISC-V DSP Extension (Packed SIMD/DSP)

- Andes contributed market-proven DSP(SIMD) as P-Extension
- Designed to accelerate slow video, audio/voice and low data rate DSP workloads

Increase power efficiency to your DSP applications


Andes Custom Extension

•

- ACE unlocks RISC-V's Potential of DSA
 - Define ACE instructions to handle time critical codes
 - Another approach to co-processor or accelerators

- All-in-one **COPILOT** development environment
 - Automation tool and ease of use
 - Extensions are easy to re-use, can be used as a library

AndesCore[™] RISC-V Families

V-Series Cray style, scalable vector processor

Taking RISC-V[®] Mainstream

Why Andes Vector Processor?

Open ISA and ecosystem creates the collaborative RISC-V community

Extensibility

Andes Vector supports bfloat16 and INT4 data types for AI training and inference and Andes Custom Extension

Scalability

Open

Scalable Vector Register to support implementations from MCU to supercomputer

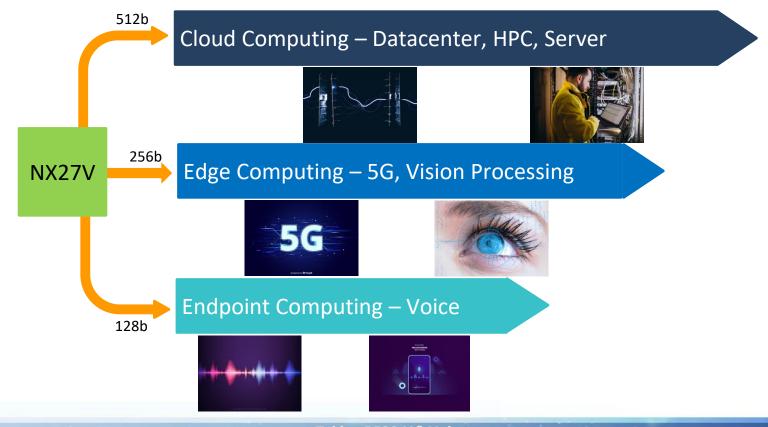
57x faster performance in parallel computing and realtime processing

Efficient

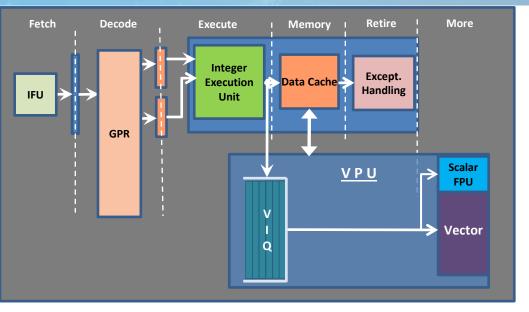
Vector processing reduces instruction issue bandwidth and starts dependent instruction sooner

Visualization

CPU pipeline visualization tool for performance optimization and stall bubble analysis



Taking RISC-V[®] Mainstream


NX27V One Vector for All Implementations

Configurable compute data width (VLEN)

ANDES

First RISC-V Vector Engine Shipped in Industry!

RVV v0.8 support* Al optimized with BFloat16 & INT4 1GHz, 0.3mm² in TSMC 7nm FF+ Configurable & scalable • Vector length 128-bits to 512-bits

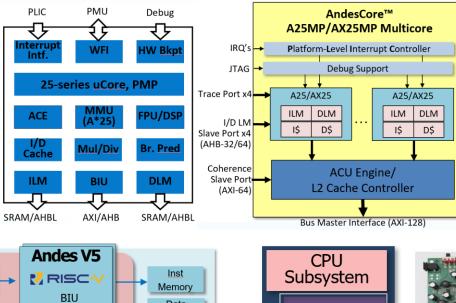
• Licensee configurable ALUs

Low power, simple to use

- Multi-level clock-gating
- In-order, 1R/W SRAM, cell based

> 50 VPU in < 10W Open Compute card

Core Overview Some details From 2-stage over 5-stage to 8-stage



AndesCore[™] 25 Series

- * 32-bit and 64-bit cores
- * AndeStar V5 architecture:
 - RV-IMAC + Andes V5 Extensions
 - Optional: F/D and S-mode/MMU
- * 5-stage pipeline, single-issue
- * Configurable multiplier
- * Optional branch prediction
- * I/D caches and Local Memory
 - Optional parity or ECC protection
 - Hit-under-miss caches
 - HW unaligned load/store accesses

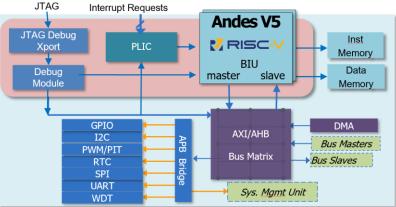
* Bus interface

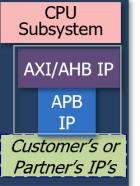
- A master port (AHB, AXI, AXIx2)
- An optional slave port (AHB)

1~4 A25/AX25 CPUs: RV-IMACFD ISA + V5 extensions P-extension draft

P-extension draft
 Supporting SMP Linux

Bus Interfaces


- LM slave port
- Coherence slave port
- AXI bus master interface

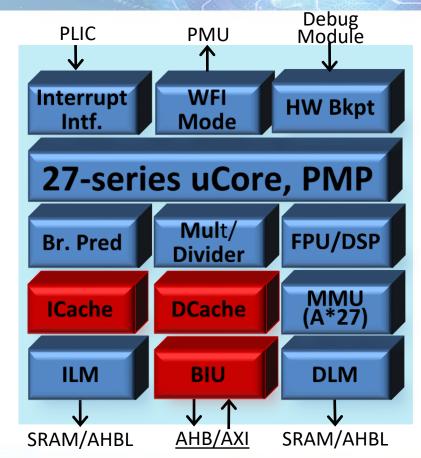

 N:1 synchronous clock ratio

PLIC for interrupt handling Debug/trace support

Andes Coherence Unit

- MESI cache coherence protocol
- Duplicate L1 dcache tags
- IO coherence for <u>cacheless</u> masters
- L2 Controller
 - Size: 128KB to 2MB

ANDES


AndesCore[™] 27 Series

A27 and AX27

- RV*GC-N-P
- 5-stage single-issue
- Programmable PMA table
- MMU for Linux
- Leveraging the mature 25-series; same performance on Local Memory

MemBoost

- Higher memory throughput for Vector
- Performance over 25-series:
 - 200% higher bandwidth
 - 50% lower latency

AndesCore[™] 45 Series

	<u>F1</u>	<u>F2</u>	<u>ID</u>	<u>11</u>	<u>EX</u>	MM	<u>LX</u>	<u>WB</u>	
8-stage in-order dual-issue									
AndeStar [™] V5 ISA:					ALU ₀		ALU ₂		
RV*GCN (S/D FPU)					ALU ₁		ALU ₃		
 RV*P-ext (DSP/SIMD) 	/ ¢۱	ILM	DEC	ISS	AG	D\$/	DLM		
MMU: for Linux Applications	יאָי		DLC	155		יר ט			
ALL have Andes extensions						Multi	plier		
Dual-issue most instruction pairs						DSP			
 Except for 2 MUL/FPU/DSP/LD_ST and some special dependent ALU instruction pairs 				Floating Point Unit					
Late ALUs enable 0-cycle load-use	(\$/LM: 2 nd cycle for alignment)								
 MemBoost for memory subsystem Low power dynamic branch prediction Unaligned data accesses Fast or small multiplier 			45-Series Pipeline						

Time-to-Market

Get the whole set, IDE, Debug Probes, BSP's and Core IP

Complete Development Environment

• AndeSight[™] Feature-Rich IDE

Free Evaluation on SID and ICE target

- AndeSoft[™] Software Stack
 - Bare metal demo projects FreeRTOS ver10 Linux

ANDES

AndeShape[™] Development Boards

Full-Featured ADP-XC7K Corvette-F1 Amazon FreeRTOS-qualified

qualified device

Debugging Hardware
 AICE-MINI+, AICE-MICRO

AndesCore[™] Ecosystem - Tools

- IAR Embedded Workbench[®]
 - Support RISC-V
 - Support P-Extension (DSP/Packed-SIMD)
 - excellent optimization technology
 - static code analysis
 - Extensive Debugging via I-jet probe

Andes N25 AE350 Orca Andes N25F AE250 Orca	- ド*TimerInterrupt*のオブション カテゴリ: General Options 新台)解析 C/C++ Compiler Assembler Output Converter カスタムビルド ビルドアクション Linker Debugger I-jet Simulator	Library Options 2 Stack/F Target Output L Device Andes N25 AE250 Corvette-F	× Andes A25 AE350 Orca Andes D25F AE350 Orca Andes N22 AE250 Corvette-F1 Andes N22 RV32E AE250 Corvette-F1 Andes N25 AE250 Orca Andes N25 AE250 Corvette-F1

Summary

► RISC-V is fast growing \rightarrow The Future of SoC

- Efficient and extensible architecture for all computing devices
- From number-crunching vector processors to Linux ready Cores
- More flexibility in RISC-V
- Andes commits to serve emerging RISC-V demands
 - Most matured offerings for RISC-V processor IP's
 - Strong development tools and SW from Andes and partners
 - V5 cores already in AIoT, FPGA, MCU, Security, Storage, Wireless

AndesCores For Your Next SoC Projects !

www.andestech.com

תודה רבה לך **THANK YOU**

ANDES

florian@andestech.com

Taking RISC-V[®] Mainstream