

RISC-V があらゆる場所にある: なぜそうなるのか? そして どの ような過程でそうなったのか?

SC

Florian Wohlrab Head of Sales EMEA, Russia & Japan Andes Technology 2021/Apr/22

florian@andestech.com

What Age Are We In

Agile Hardware Development

Accelerate chip development and commercial adoption

DSA

A New Golden Age for **Computer Architecture**

Improved Security

Prevent side channel attack for

NOTWICE & RECEIPTION John Hennessy and David Patterson Receive 2017 ACM A.M. Turing Award re

Open ISA Industry-standard open ISA

Source: https://www.acm.org/hennessy-patterson-turing-lecture

ANDES

Domain-Specific Architectures

Tailored to a specific problem domain and offer significant performance/efficiency gains

Taking RISC-V® Mainstream

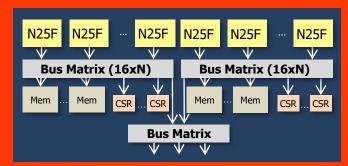
Why is RISC-V everywhere and How

- New CPU architectures need time to be adopted, TapeOut and reviewed
 - RISC-V around many years and proven in commercial designs (already mature)
 - Taped Out and Reviewed by many Companies
- Customers have different use cases
 - From low power to very high power
 - From single Core to Many Cores (from 1 to 1000)
- RISC-V allow for greater flexibility
 - Custom instructions allow for great flexibility and true innovations
- Eco System is needed (now ready)
 - It takes time for an ECO System to start and have all the different projects available
 - For RISC-V the Eco System is now very big and great

Why: Examples of AndesCore[™] in SoC

Renesas: ASSP MCU with configurable V5 cores

- Scalable/configurable performance
- Selectable safety features
- Customization optionsFeature-rich AndeSight IDE



IAR

Telink: IoT and Wireless Audio with D25F embedded

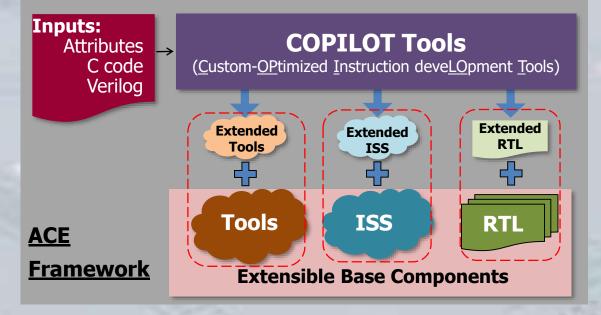
- Strong integer/DSP performance
- Efficient small data processing
- Good development tools

Picocom: 5G Open RAN small cells

AI Accelerators for Servers with >10 NX27V Cores

RV-Vectore with 512-bit VLEN/SIMD

- Custom instructions
- LLVM compiler

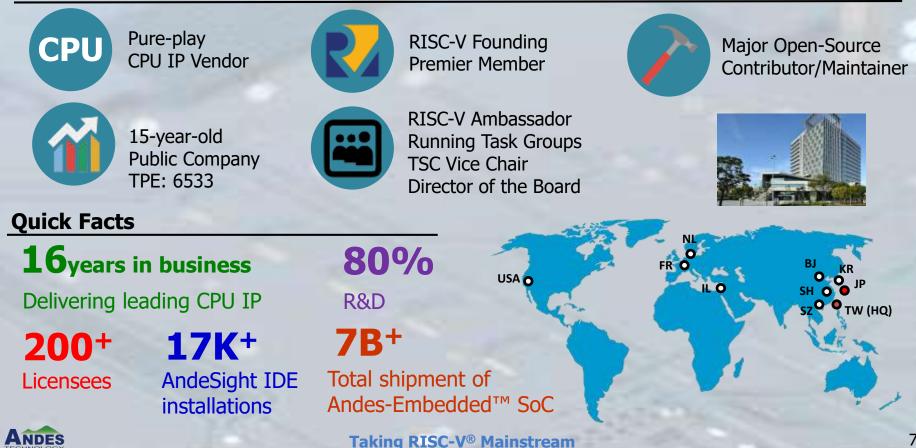


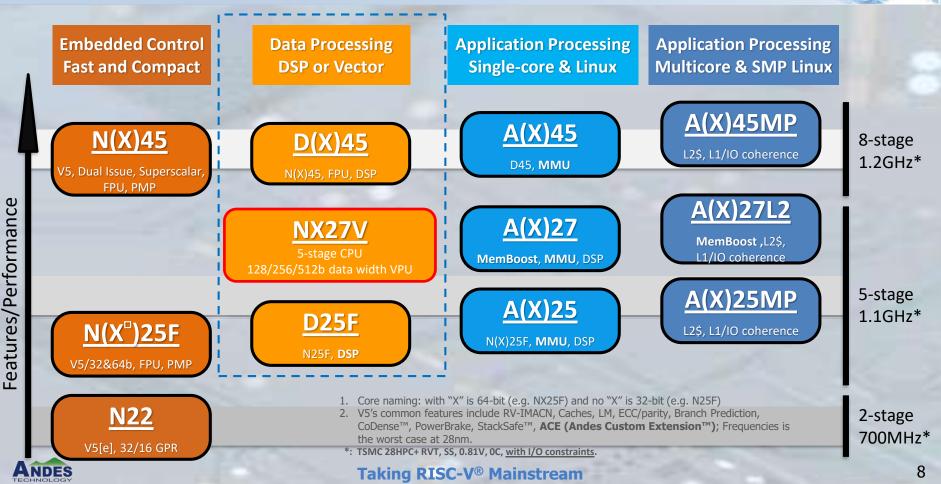
Why: Solutions for Data Path Acceleration

- RVV extension (Vector)
 - Scalable vector registers
 - For high data rate computations
- Andes Custom Extension[™] (ACE)

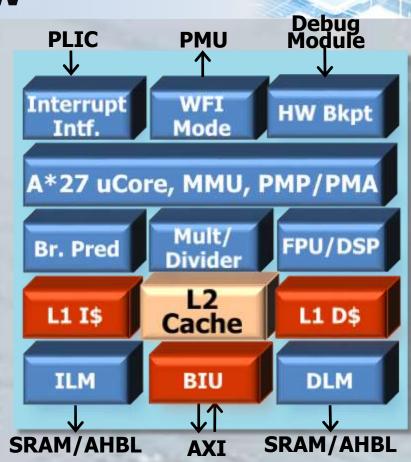
- RVP extension (DSP/SIMD)
 - Integer/fixed-point on already existing GPR
 - For audio/voice, small image, slow video

ISS:


- AndeSim near-cycle accurate simulatorImperas fast simulator
 - imperas


Andes Technology Corporation

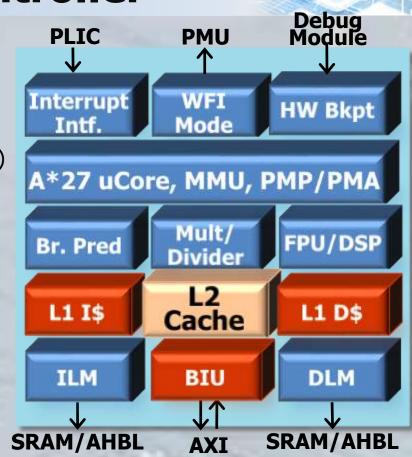
Who We Are



AndesCore™ RISC-V Processor Lineup

A27L2/AX27L2 Overview

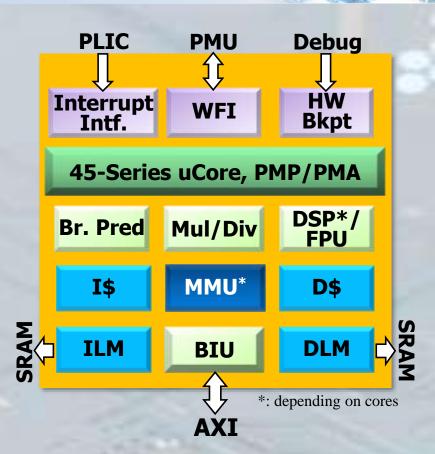
- A27/AX27 + L2\$ controller
- AndeStar[™] V5 base for "A" cores
 - RV*GCN + P
 - MMU support
 - Andes V5 extensions
- 5-stage single-issue cores
- Programmable PMP/PMA
- MemBoost for L1 caches
 - Skip unnecessary writes to dcache
 - Multiple outstanding data accesses
 - I/D cache prefetch


A27L2/AX27L2: L2\$ Controller

Features:

- Size up to 2MB with 64B lines
- 16-way, pseudo-random replacement
- 2 tag&data banks with bank interleaving
 - Programmable SRAM latencies (setup & delay)
- Prefetching based on access types (I or D)
- 128-bit AXI master/slave ports through BIU
- Optional ECC error protection

Performance with 512KB L2 cache:


- → Comparing AX27L2 and AX27
- Memory bandwidth: 2.1x
- Memory latency: 30%
- Specint2k: 1.9x

45-Series: Features

- AndeStar[™] V5 architecture:
 - Base: RV*GCN + Andes V5 extensions
 - N45/NX45: base
 - D45: base + P
 - A45/AX45: base + P + MMU
 - **A45MP/AX45MP**: base + P + MMU
- 8-stage in-order dual-issue
 - Independent pairs with 1 or 2 ALU insns
 - Most dependent pairs with 2 ALU insns
 - Late ALU for 0-cycle load-use penalty
- Unaligned data accesses
- Low power dynamic branch prediction
- MemBoost memory subsystem

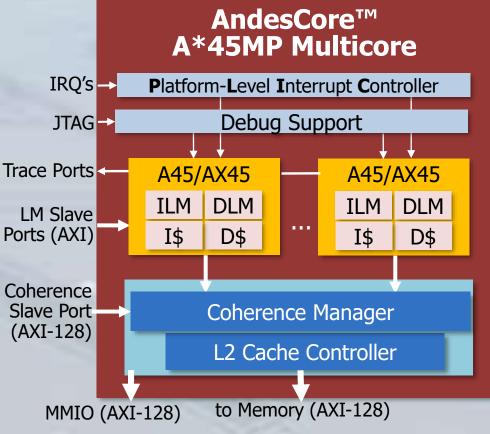
45-Series: Features

Virtual memory support:

- MMU and S-mode
- All page sizes and virtual memory mappings (SV32/39/48)
- Shared TLB: 32-512 entries

Physical memory support:

• Up to 16-entry PMP and PMA


L1 I/D Caches:

- Size up to 64KB, 64B lines, up to 4-way
- Cache lock support
- Optional Parity or ECC error protection
- I/D Local Memory (ILM/DLM)
 - 4KB up to 16MB
 - Optional ECC error protection

A(X)45MP: Cache-Coherent Multicore

Cache coherence scheme

- Directory-based for scalability
- MESI coherence protocol

45MP Coherence Manager

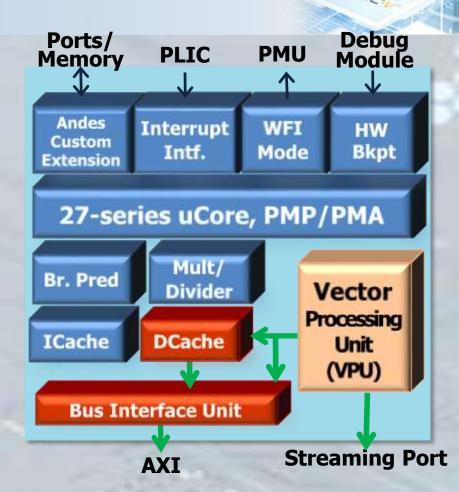
- Support 1~4 A45/AX45
- IO coherence for cacheless masters
- L2\$ Controller (optional)
 Similar to that of A*27L2

Bus Interfaces

- Memory and MMIO ports
- LM slave ports (one per core)
- Coherence slave port
- PLIC for global interrupt handling
- Debug/trace support
 Linux SMP ready

45-Series: Performance

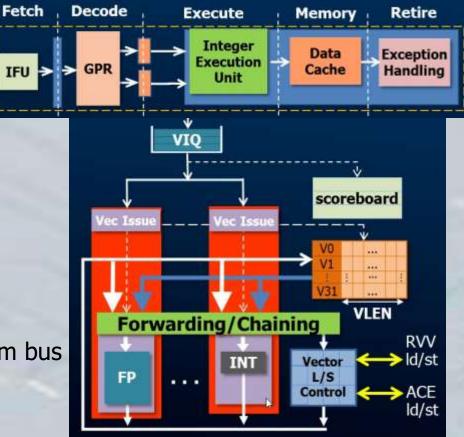
Total compute performance (at 28nm):


Coremark®	45-series (1.2 GHz)	27-series (1.1 GHz)	Speedup (Per-MHz)	Speedup (Total Perf.)
RV32	5.66	3.58	1.58	1.72
RV64	5.50	3.53	1.56	1.70

- 70% higher than the 27-series
- With less than 50% increase in logic area and power
- Memory bandwidth (C copy): 45-series is 35% higher than 27-series
- Running up to 2.4 GHz at 12nm

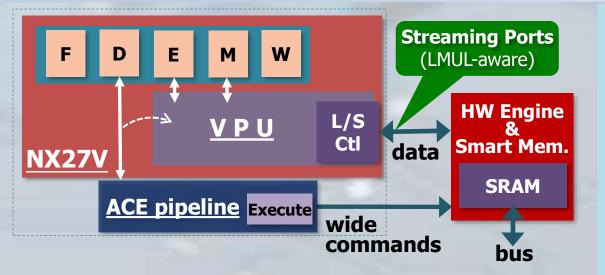
NX27V: Overview

- AndeStar V5 architecture:
 - RV64GCN+ Andes V5 extensions
 - Vector ext. (RVV) 1.0: latest spec
- An efficient 5-stage scalar unit
 - Optional branch prediction
 - FP16 instructions
- I/D caches
 - Caches: 8KB to 64KB
 - HW unaligned load/store accesses
 - Optional parity or ECC protection
 - I\$/D\$ prefetch
 - Multiple outstanding data accesses
 - Cached and uncached


Taking RISC-V® Mainstream

16

NX27V: Overview


RVV data formats:

- Standard: int8~int64, fp16~fp64
- Andes-extended: bfloat16 and int4
- A powerful Vector Unit (VPU):
 - RVV starts execution after retired
 - Multiple Functional Units
 - Operating in parallel and out of order
 - Chainable, and most fully pipelined
 - VLEN & SIMD width: 128, 256, 512
- Independent memory access paths:
 - RVV load/store thru dcache and system bus
 - ACE load/store thru Streaming Port

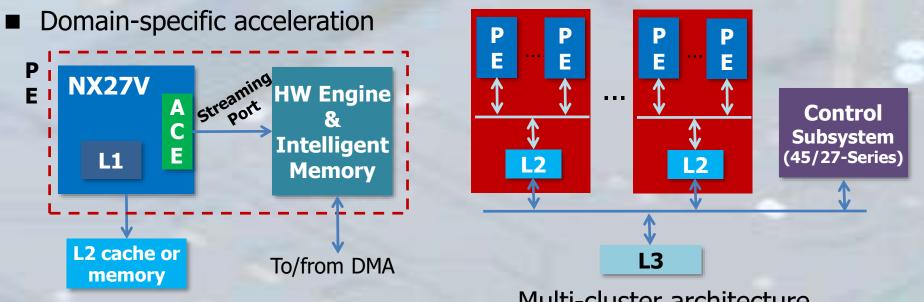
NX27V: ACE Streaming Port

insn svload { operand= {out vr data, io addrCtl addr, imm2 mode,

```
};
csr_op= {vl};
streaming_port= load;
csim= . . .
```

A usage example

- HW engine: application-specific DMA and structured computations (e.g. CNN)
- ACE instructions: control HW engine, and load/store data to/from VRF


Advantages:

};

- HW engine is tightly-coupled
- Data accesses are more efficient (such as address auto-increment and wrap-around)

Scalable Acceleration Architecture

Multi-cluster architecture

Separate control from acceleration to optimize them independently
 Programming support: OpenCL

- Popular for heterogeneous multicore architecture with host and devices
- Support RVV intrinsic programming in addition to auto-vectorization

AndeSentry™ Security Framework

- An open framework for a wide spectrum of threat mitigations
 - From cyber attacks to physical attacks
 - Flexible, scalable, and trustable
 - Solutions from Andes and partners
- Scope:
 - TEE, crypto acceleration, protection against cyber attacks, countermeasures for physical attacks
 - Hardware and software

Andes Wrap up

Lineup of Andes V5 RISC-V Processors

- From small power saving MCU up to powerful Vector units
- From single Core to MultiProcessor with L1 Cache/IO coherence and L2 Cache

Andes V5 Product Introduction

- A27L2 and AX27L2
- A45MP and AX45MP
- NX27V Vector Processor release in RVV Version 1.0
- AndeSentry[™] Security Framework

Andes Technology : your Trusted Partner!

- Over 7 Billion Cores shipped
- 16 year old, Public Company

Taking RISC-V[®] Mainstream

florian@andestech.com

Thank you

ありがとうございました

florian@andestech.com