

SCRx family of the RISC-V compatible processor IP: compact MCU to octa-core SMP Linux

Alexander Redkin RISC-V Day Tokyo November 2020

Outline

- Company intro
- RISC-V compatible IP
- Customization services

Semiconductor IP company, founding member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores

- Immediately available, silicon-proven and shipping to volume
- 5+ years of *focused* RISC-V development
- Core team comes from 10+ years of highly-relevant background
- SDKs, samples in silicon, full collateral

Full service to specialize CPU IP for customer needs

- One-stop workload-specific customization for 10x improvements
 - with tools/compiler support
- IP hardening at the required library node
- SoC integration and SW migration support

Company background

Est 2015, 60+ EEs

HQ at Cyprus (EU)

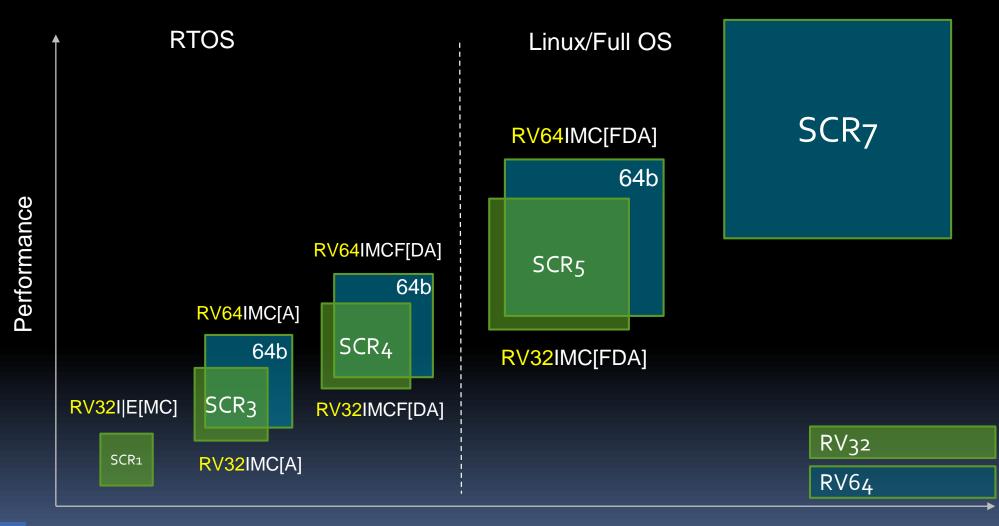
- R&D offices in St.Petersburg and Moscow (Russia)
- Representatives in APAC, EMEA, US Japan: Syncom Co.,LTD

Team background:

- 10+ years in the corporate R&D (major semi MNC)
- Developed cores and SoC are in the mass productions

Expertise:

- high-performance and low-power embedded cores and IP
- ASIP technologies and reconfigurable architectures
- Architectural exploration & workload characterization
- Compiler technologies



SCRx baseline cores

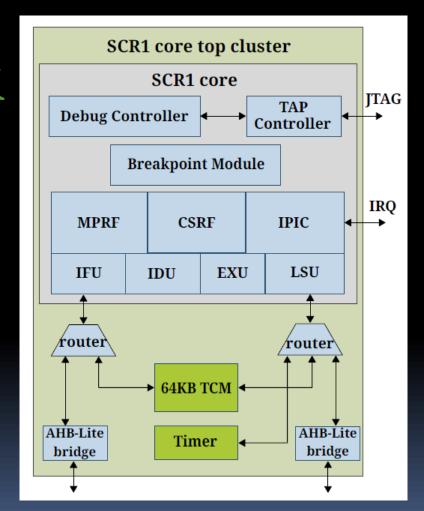
RV64IMCFDA

State-of-the art RISC-V CPU IP

Features		٨٨٥	RTOS/ Bare Metal		Linux/ "Full" OS		
			SCR1* EFREE!	SCR3	SCR4	SCR5	SCR7
Width 32bit 64bit		•	•	•	•		
			•	•	•	•	
ISA			RV32I E[MC]	RV[32 <mark> 64</mark>] MC[A	RV[32 <mark>64</mark> IMCFAD]	RV[32 64]IMC[AFD]	RV64IMCAFD
Pipeline type			In-order	In-order	In-order	In-order	Superscalar
Pipeline, stages			2-4	3-5	3-5	7-9	10-12
Branch prediction	on			Static BP, RAS	Static BP, RAS	Static BP, BTB, BHT, RAS	Dynamic BP, BTB, BHT, RAS
Execution prior	ity levels		Machine	User, Machine	User, Machine	User, Supervisor, Machine	User, Supervisor, Machine
Extensibility/cu	stomization		•	•	•	•	•
Execution	MUL/DIV	area-opt	•	0	0		
units		hi-perf	0	•	•	•	•
	FPU				•	•	•
	TCM [w/ECC parity]		0	0	0	0	0
Maman	L1\$ [w/ECC parity]			0	0	•	O O O O O O O O O O O O O O O O O O O
Memory subsystem	L2\$ [w/ECC]					0	0
Subsystem	MPU			•	•	•	•
	MMU, virtual memory					•	• 5
	Integrated	JTAG debug	•	•	•	•	•
Debug	HV	√ BP	1-2	1-8 adv ctrl	1-8 adv ctrl	1-8 adv ctrl	1-8 adv ctrl
	Performar	nce counters	0	0	0	0	0
Interrupt	IF	RQs	8-32	8-1024	8-1024	8-1024	8-1024
Controller	Fea	atures	basic	advanced	advanced	advanced+	advanced+ up to 8-16 cores
SMP support			up to 4 cores with cohere		ores with coherency		
	A	НВ	•	0	0	0	7
I/F options	Α	XI4	0	•	•	•	•
	A	ACE .					0

Baseline cores:

- Clean-slate designs in System Verilog
- Configurable and extensible
- 100% compatible with major EDA flows



SCR1 overview

Industry-grade compact MCU core for deeply embedded applications and accelerator control

- RV32I|E[MC] ISA
- 2 to 4 stages pipeline
- M-mode only
- Optional configurable IPIC
- Optional integrated Debug Controller
- Choices of the optional MUL/DIV unit
- Open sourced under SHL (Apache 2.0 derivative) since 2017
 - Unrestricted commercial use allowed
- High quality, silicon-proven <u>free</u> MCU IP
- In the top System Verilog Github repos in the world
 - https://github.com/syntacore/scr1
- Full collateral TB & verification suite, SDK, specs, SW...
- Best-effort support provided, commercial offered

SCR1 overview cont

Performance*, per MHz	DMIPS	-02	1.28	
	DIVIIF3	-best**	1.89	
per wir iz	Coremark	-best**	2.95	

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

Synthesis data:

Minimal RV32EC config: 11 kGates

Default RV32IMC config: 32 kGates

Range 10..40+ kGates

250+ MHz @ tsmc90lp {typical, 1.0V, +25C}

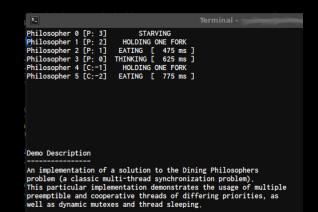
What's new:

- Extensive user guide and quick start collateral
 - works out-of-the-box in all major sims
- Verilator support
- More tests/sample: RISC-V compliance, others
- Taped-out @several companies
- Regular talk at ORCONF
- Updated and maintained

^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

SCR₁ SDK

https://github.com/syntacore/scr1-sdk


Repository content:

- docs SDK documentation
- fpga SCR1 SDK FPGA projects
- images precompiled binary files
- scr1 SCR1 core source files
- sw sample SW projects

Supported platforms:

- Digilent Arty and Nexys 4 (Xilinx)
- Terasic DE10-Lite and Arria V GX starter (Intel)

Zephyr"

Software:

- Bootloader
- Zephyr OS
- Tests/sample apps
- Pre-built GCC-based toolchain (Win/Linux)

Fully open SDK designs + pre-build images

One of the easiest paths to start with **RISC-V**

SCR3: 32 or 64 bit

High-performance multicore capable MCU-class core

- RV32I[MCA] or RV64I[MCA] ISA
- Machine and User privilege modes
- Optional MPU (Memory Protection Unit)
- Optional Tightly Coupled Memory (TCM), L1 caches ECC/parity
- 32|64bit AHB or AXI4 external interface
- Optional high-performance or area-optimized MUL/DIV unit
- Integrated IRQ controller and PLIC
- Advanced debug with JTAG i/f
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
 - with memory coherency

Controller

IPIC

CSRF

SCR3 core top cluster

Debug Controller

SCR3 core

Integer

High-perf

MUL/DIV

	416 TO DAXI4(AHB/OCP) bridge	224 KB		(AHB/OCP) dge	
		RV	′ 32	RV6	4
IIPS	-O2	1.8	86	1.97	
III 3	-best**	2.9	937	3.27	
mark	-best**	3.	30	3.40	

MPU

DM

Core

Performance*,

per MHz

Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM


^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

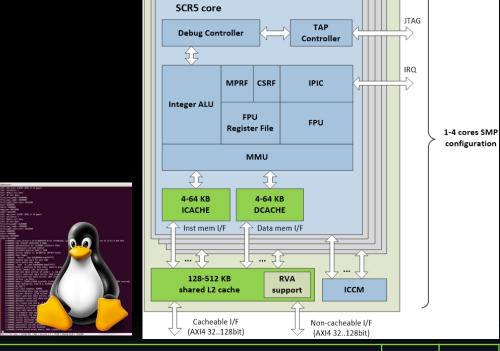
SCR4: 32 or 64 bit

High-performance multicore capable MCU core with FPU

- RV32IMCF[DA] or RV64IMCF[DA] ISA
- U- and M-mode
- Configurable advanced BP, fast MUL/DIV
- Integrated IRQ controller and PLIC
- 32|64bit bit AHB or AXI4 external interface
- Optional MPU, TCM, L1 caches w/ECC
- Advanced debug controller with JTAG
- Configurable SP or DP FPU
 - IEEE 754-2008 compliant
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
 - with memory coherency

	RV32	RV64		
	DMIPS	-02	1.86	1.97
Performance*,	DIVIIF3	-best**	2.96	3.27
per MHz	Coremark	-best**	3.30	3.40
	DP Whetstone	-best**	1.22	1.22

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM


^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

SCR5: 32 or 64 bit

Efficient entry-level APU/embedded core

- RV32IMC[AFD] or RV64IMC[AFD] ISA
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
- Advanced BP (BTB/BHT/RAS)
- IRQ controller (integrated and PLIC)
- M-, S- and U-modes
- Virtual memory support, full MMU
- L1, L2 caches with coherency, atomics, ECC
- High performance double-precision FPU
- Linux and FreeBSD support
- 1GHz+@28nm
- Advanced debug with JTAG i/f

SCR5 core top SMP cluster

SCR5 core 0

	RV32	RV64		
Performance*,		-O2	1,60	,
	DIVIIFS	-best**	2,48	2.62
per MHz	Coremark	-best**	2,83	3.02

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

^{**} O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

RV64 SCR7

Efficient mid-range application core

- RV64GC ISA
- SMP up to 8, later 16 cores
- Flexible uarch template, 10-12 stage pipeline
- Initial SCR7 configuration:
 - Decode and dispatch up to two instructions per cycle
 - Out-of-order issue of up to four micro-ops
 - Out-of-order completion, in-order retirement
- M-, S- and U-modes
- Virtual memory support, full MMU, Linux
- 16-64KB L1, up to 2MB L2 cache with ECC
- 1.5 GHz+ @28nm
- Advanced debug with JTAG i/f

2-way SCR7 implementation

4-way SCR7 derivative

App-specific mix of Integer, FPU and LSU pipelines

Perforr	nance*,
per	MHz

DMIPS	-O2	3.25			
DIVIIFS	-best**	3.80			
Coremark	-best**	5.12			

^{*} Preliminary data, 2-way implementation, Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM

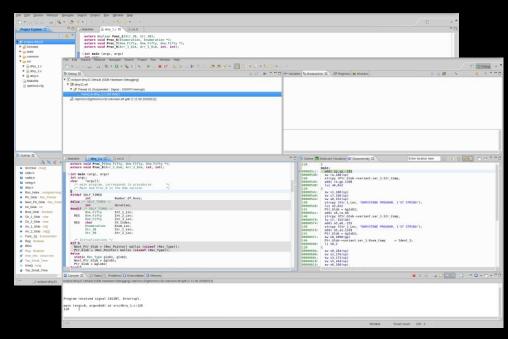
^{**} O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

Fully featured SW development suite

Stable IDE in production:

- GCC 10.2
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

Hosts: Linux, Windows


Targets: BM, Linux (beta)

Also available:

- LLVM 5.0
- CompCert 3.1
- 3rd party vendors

Simulators:

- Qemu
- Spike
- 3rd party vendors

JTAG-based debug solutions:

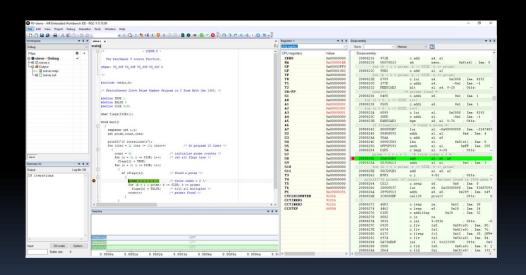
Supports: Segger J-link, Olimex ARM-USB-OCD family, Digilink JTAG-HS2, more vendors soon

Wide support by 3rd party tools and SW vendors

Lauterbach Trace32

https://www.lauterbach.com/frames.html?pro/pro__syntacore.html

Segger Embedded Studio


https://wiki.segger.com/Syntacore_SCR1_SDK_Arty

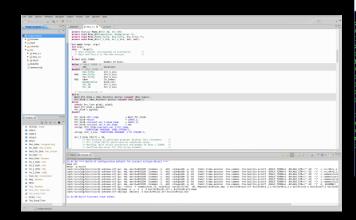
IAR Embedded Workbench

https://www.iar.com/iar-embedded-workbench/#!?architecture=RISC-V

...more in 2020

Fully integrated FPGA-based SDKs

Stable Eclipse/gcc based toolchain with IDE:


- GCC 10.2
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger o.1o.o
- Eclipse 4.9.0

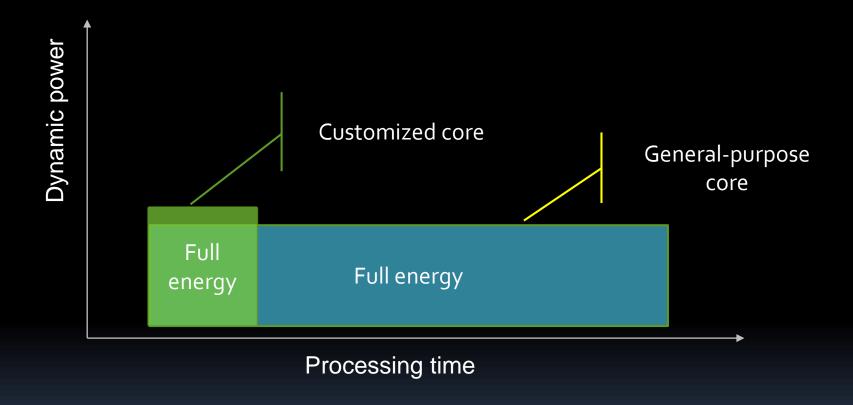
HW platform based on standard FPGA dev.kits

- Multiple boards supported (Altera, Xilinx)
- Low-cost 3rd party JTAG tools
- Open design for easy start

SW:

- Bootloader
- OS: Zephyr/FreeRTOS/Linux
- Application samples, tests, benchmarks

COM4:115200baud - Tera Term VT
Elle Edit Setup Control Window Help



https://www.altera.com/products/boar ds_and_kits/dev-kits/altera/kit-arriav-starter.html

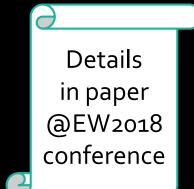
Extensibility/customization: how it works

Extensibility features:

- Computational capabilities
 New functions using existing HW
 New Functional Units
- Extended storage
 Mems/RF, addressable or state
 Custom AGU
- I/O ports
- Specialized system behavior
 Standard events processing
 Custom events

Domain examples:

- Computationally intensive algorithms acceleration
- Specialized processors (including DSP)
- High-throughput applications
 - CV/ML/AI
 - Wireless/Comms
 - Network/DPI/real-time processing



Custom ISA extension for AES & other crypto kernels acceleration for SCR5

- Data
 - RV32G FPGA-based devkit, g++ 5.2.0, Linux 4.6, optimized C++ implementation
 - Rv32G + custom same + intrinsics
 - Core i7 6800K @ 3.4GHz, g++ 5.4.0, Linux 64, optimized C++ implementation
- 60..575x speedup @ modest area increase: 11.7% core, 3.7% at the CPU cluster level

		Encoding throughput, MB/s			Normalized per MHz, MB/s			RV32G + custom		
Platform	Fmax, MHz	Crypto-1	Crypto-2	AES-128	Crypto-1	Crypto-2	AES-128	•		eed-up
RV ₃₂ G	20	0.025	0.129	0.238	0.00125	0.00645	0.0119	575.00	117.74	60.93
RV32G + custom	20	14.375	15.188	14.502	0.71875	0.7594	0.7251			
Core i7	3400	79.115	235.343	335.212	0.02327	0.06922	0.09859	30.89	10.97	7-35
Core i7 + NI	3400			3874.552			1.13957			0.64

Disclaimer: Authors are aware AES allows for more efficient dedicated accelerators designs, used as example algorithm

Getting access/evaluation

SCR₁

- Is fully open: https://github.com/syntacore/scr1-sdk
- SHL-licensed with unrestricted commercial use allowed
 - Commercial SLA-based support is available

SCR 3 4 5 7

Full package* access is available after simple evaluation agreement

For more info: evaluation@syntacore.com

(*) sufficient for evaluation and tapeout

Summary

- Syntacore offers high-quality RISC-V compatible CPU IP
 - Founding member, fully focused on RISC-V since 2015
 - Silicon-proven and shipping in full-wafer production
 - Turnkey IP customization services
 - with full tools/compiler support

- Local contact in Japan: Syncom Co.,LTD
 - Mr. Katsuhiro Katayama <u>katayama@synkom.co.jp</u>

info@syntacore.com

Thank you!