

Syntacore open-source and commercial RISC-V solutions

Alexander Redkin Executive director

Outline

- Company intro
- RISC-V compatible IP
- Customization services

Syntacore introduction

Semiconductor IP company, founding member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores

- Immediately available, silicon-proven and shipping to volume
- 5+ years of focused RISC-V development
- Core team comes from 10+ years of highly-relevant background
- SDKs, samples in silicon, full collateral

Full service to specialize CPU IP for customer needs

- One-stop workload-specific customization for 10x improvements
 - with tools/compiler support
- IP hardening at the required library node
- SoC integration and SW migration support

Company background

Est 2015, 70+ EEs

HQ at Cyprus (EU)

- R&D offices in St. Petersburg and Moscow (Russia)
- Representatives in APAC, EMEA, US

Japan: Syncom Co., LTD

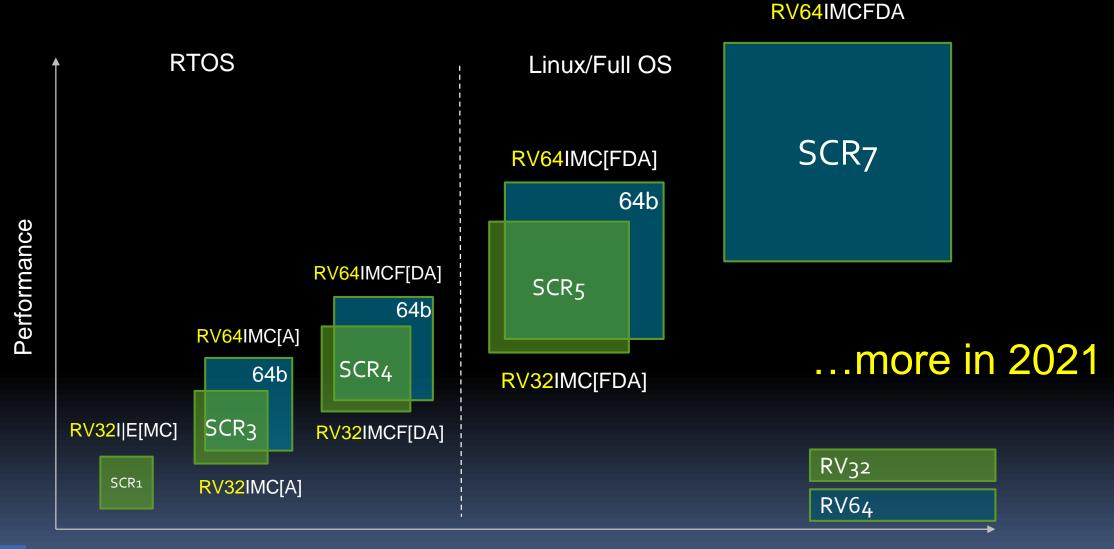
Team background:

- 10+ years in the corporate R&D (major semi MNC)
- Developed cores and SoC are in the mass productions

Expertise:

- high-performance and low-power embedded cores and IP
- ASIP technologies and reconfigurable architectures
- Architectural exploration & workload characterization
- Compiler technologies

Some current results


- State-of-the-art RISC-V CPU IP line with competitive features
 - commercially deployed in SoCs up to 5nm
- Customers in APAC, EMEA, US
 - References available

- MPWs and full-wafer production at the clients
 - ✓ SoC volumes in x100 000
 - ✓ Project example: 6o-core SoC ~700 mm² @ 7nm

SCRx baseline cores

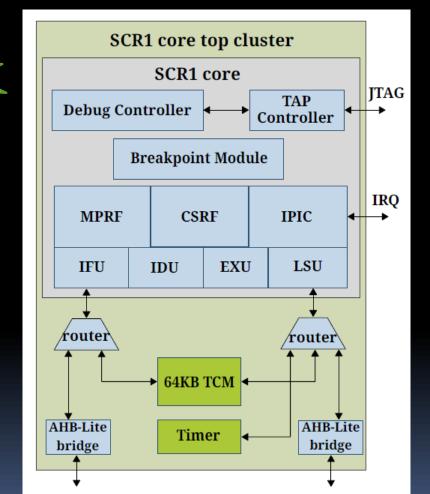
Area, power

State-of-the art RISC-V CPU IP

Features		٨٠,	RTOS/ Bare Metal	Linux/ "Full" OS				
		SCR1* FREE SCR3 SCR4 SC		SCR5	SCR7			
Width 32bit 64bit		•	•	• •				
			•	•	•	•		
ISA			RV32I E[MC]	RV[32 <mark> 64</mark>]IMC[A	RV[3264]IMCF[AD]	RV[3264]IMC[AFD]	RV64IMCAFD	
Pipeline type			In-order	In-order	In-order	In-order	Superscalar	
Pipeline, stage	S		2-4	3-5	3-5	7-9	10-12	
Branch prediction				Static BP, RAS	Static BP, RAS	Static BP, BTB, BHT, RAS	Dynamic BP, BTB, BHT, RAS	
Execution priority levels		Machine	User, Machine	User, Machine	User, Supervisor, Machine	User, Supervisor, Machine		
Extensibility/o	ustomization	1	•	•	•	•	•	
Execution	MUL/DIV	area-opt	•	0	0			
units		hi-perf	0	•	•	•	•	
	F	-PU			•	•	•	
		/ECC parity]	0	0	0	0	0	
Memory	LI\$ [w/	ECC parity]		0	0	•	•	
subsystem	L2\$ [w/ECC]					0	0	
Subsystem	MPU			•	•	•	•	
	MMU, virtual memory					•	•	
	Integrated JTAG debug		•	•	•	•	•	
Debug	HW BP		1-2	1-8 adv ctrl	1-8 adv ctrl	1-8 adv ctrl	1-8 adv ctrl	
	Performar	nce counters	0	0	0	0	0	
Interrupt	II	RQs	8-32	8-1024	8-1024	8-1024	8-1024	
Controller	Fea	atures	basic	advanced	advanced	advanced+	advanced+ up to 8-16 cores	
SMP support				up t	o 4 cores with coher	rency up to 8-16 co		
	A	AHB	•	0	0	0		
I/F options	A	XI4	0	•	•	•	•	
	A	ACE					0	

Baseline cores:

- Clean-slate designs in System Verilog
- Configurable and extensible
- 100% compatible with major EDA flows



SCR1 overview

Industry-grade compact MCU core for deeply embedded applications and accelerator control

- RV32I|E[MC] ISA
- 2 to 4 stages pipeline
- M-mode only
- Optional configurable IPIC
- Optional integrated Debug Controller
- Choices of the optional MUL/DIV unit
- Open sourced under SHL (Apache 2.0 derivative) since 2017
 - Unrestricted commercial use allowed
- High quality, silicon-proven <u>free</u> MCU IP
- In the top System Verilog Github repos in the world
 - https://github.com/syntacore/scr1
- Full collateral TB & verification suite, SDK, specs, SW...
- Best-effort support provided, commercial offered

SCR1 overview cont

Dayfayyaayaat	DMIPS	-02	1.28	
Performance*, per MHz	DIVIIFS	-best**	1.89	
per wiriz	Coremark	-best**	2.95	

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

Synthesis data:

Minimal RV32EC config: 11 kGates

Default RV32IMC config: 32 kGates

Range 10..40+ kGates

250+ MHz @ tsmc90lp {typical, 1.0V, +25C}

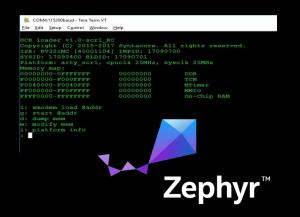
What's new:

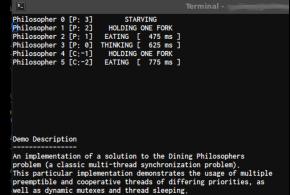
- Extensive user guide and quick start collateral
 - works out-of-the-box in all major sims
- Verilator support
- More tests/sample: RISC-V compliance, others
- Taped-out @several companies
- Regular talk at ORCONF
- Updated and maintained

^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

SCR₁ SDK

https://github.com/syntacore/scr1-sdk


Repository content:


- docs SDK documentation
- fpga SCR1 SDK FPGA projects
- images precompiled binary files
- scr1 SCR1 core source files
- sw sample SW projects

Supported platforms:

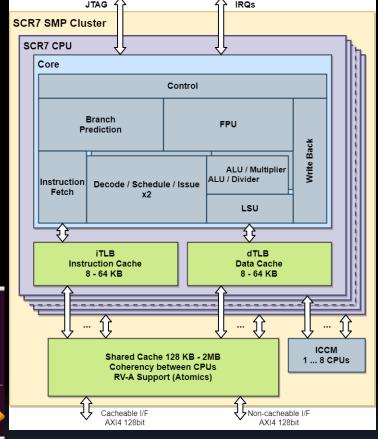
- Digilent Arty and Nexys 4 (Xilinx)
- Terasic DE10-Lite and Arria V GX starter (Intel)

Software:

- Bootloader
- Zephyr OS
- Tests/sample apps
- Pre-built GCC-based toolchain (Win/Linux)

Fully open SDK designs + pre-build images

One of the easiest paths to start with **RISC-V**



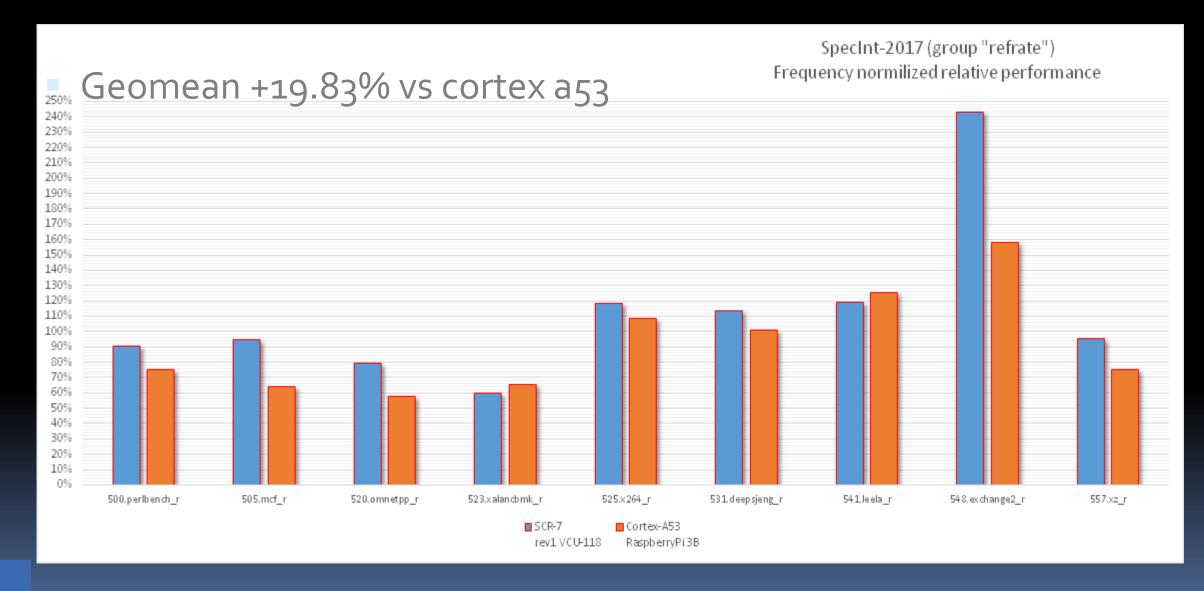
RV64 SCR7

Efficient mid-range application core

- RV64GC ISA
- SMP up to 8, later 16 cores
- Flexible uarch template, 10-12 stage pipeline
- Initial SCR7 configuration:
 - Decode and dispatch up to two instructions per cycle
 - Out-of-order issue of up to four micro-ops
 - Out-of-order completion, in-order retirement
- M-, S- and U-modes
- Virtual memory support, full MMU, Linux
- 16-64KB L1, up to 2MB L2 cache with ECC
- 1.5 GHz+ @28nm
- Advanced debug with JTAG i/f

Performance*,
per MHz

DMIPS	-O2	3.25			
DIVIIFS	-best**	3.80			
Coremark	-best**	5.12			


^{*} Preliminary data, 2-way implementation, Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM

^{**} O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

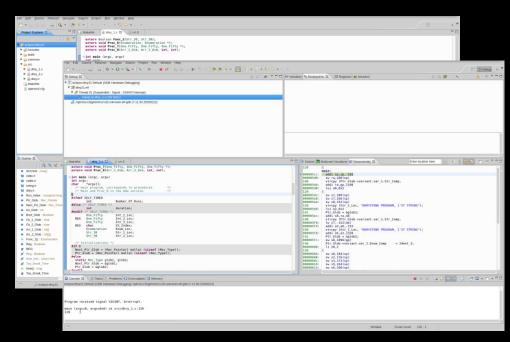
SCR7 SpecInt 2017 in HW

Fully featured SW development suite

Stable IDE in production:

- GCC 10.2
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

Hosts: Linux, Windows


Targets: BM, Linux (beta)

Also available:

- LLVM 5.0
- CompCert 3.1
- 3rd party vendors

Simulators:

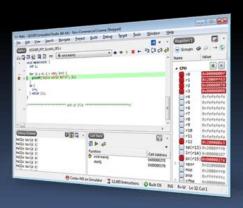
- Qemu
- Spike
- 3rd party vendors

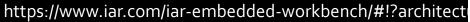
JTAG-based debug solutions:

Supports: Segger J-link, Olimex ARM-USB-OCD family, Digilink JTAG-HS2, more vendors soon

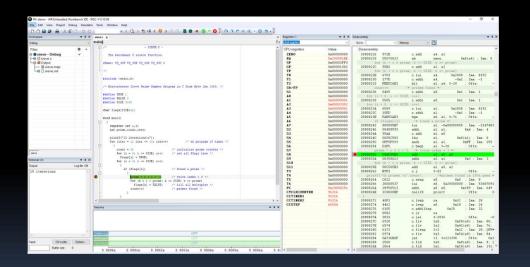
Wide support by 3rd party tools and SW vendors

Lauterbach Trace32


https://www.lauterbach.com/frames.html?pro/pro__syntacore.html


Segger Embedded Studio

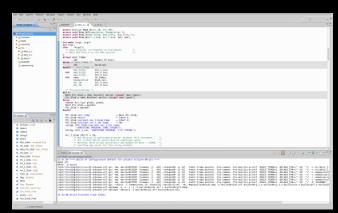
https://wiki.segger.com/Syntacore_SCR1_SDK_Arty



IAR Embedded Workbench

SCR_x SDK

Stable Eclipse/gcc based toolchain with IDE:


- GCC 10.2
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

HW platform based on standard FPGA dev.kits

- Multiple boards supported (Altera, Xilinx)
- Low-cost 3rd party JTAG tools
- Open design for easy start

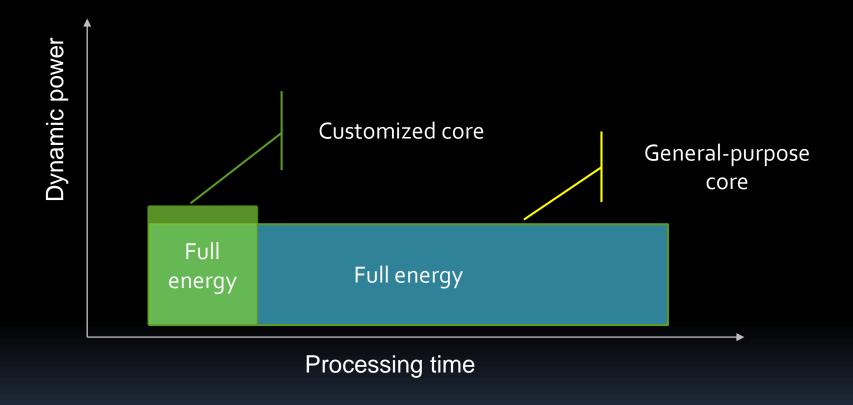
SW:

- Bootloader
- OS: Zephyr/FreeRTOS/Linux
- Application samples, tests, benchmarks

preemptible and cooperative threads of differing priorities, as

well as dynamic mutexes and thread sleeping.

M COM4:115200baud - Tera Term VT



https://www.altera.com/products/boar ds_and_kits/dev-kits/altera/kit-arriav-starter.html

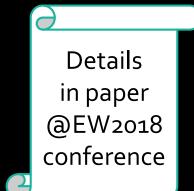
Extensibility/customization: how it works

Extensibility features:

- Computational capabilities
 New functions using existing HW
 New Functional Units
- Extended storage
 Mems/RF, addressable or state
 Custom AGU
- I/O ports
- Specialized system behavior
 Standard events processing
 Custom events

Domain examples:

- Computationally intensive algorithms acceleration
- Specialized processors (including DSP)
- High-throughput applications
 - Wire Speed Processing/DPI/Realtime/Comms



Custom ISA extension for AES & other crypto kernels acceleration for SCR5

- Data
 - RV32G FPGA-based devkit, g++ 5.2.0, Linux 4.6, optimized C++ implementation
 - Rv32G + custom same + intrinsics
 - Core i7 68ooK @ 3.4GHz, g++ 5.4.o, Linux 64, optimized C++ implementation
- 60..575x speedup @ modest area increase: 11.7% core, 3.7% at the CPU cluster level

		Encoding throughput, MB/s			Normalized per MHz, MB/s			RV32G + custom		
Platform	Fmax, MHz	Crypto-1	Crypto-2	AES-128	Crypto-1	Crypto-2	AES-128	•		eed-up
RV ₃₂ G	20	0.025	0.129	0.238	0.00125	0.00645	0.0119	575.00	117.74	60.93
RV32G + custom	20	14.375	15.188	14.502	0.71875	0.7594	0.7251			
Core i7	3400	79.115	235.343	335.212	0.02327	0.06922	0.09859	30.89	10.97	7-35
Core i7 + NI	3400			3874.552			1.13957			0.64

Disclaimer: Authors are aware AES allows for more efficient dedicated accelerators designs, used as example algorithm

Getting access/evaluation

SCR₁

- Is fully open: https://github.com/syntacore/scr1-sdk
- SHL-licensed with unrestricted commercial use allowed
 - Commercial SLA-based support is available

SCR 3 4 5 7

Full package* access is available after simple evaluation agreement

For more info: evaluation@syntacore.com

(*) sufficient for simulation and synthesis

IP collateral (what is included)

Standard core package (SCR₃)

- RISC-V compatible core
 - RV[32|64]IMC[A] ISA
 - RTL (encrypted for evaluation stage), suitable for simulation and synthesis
 - Netlist for the required FPGA devices (Xilinx/Altera)
- Simulation and verification environment
 - Testbench, Integration verification environment
 - Architectural and compliance tests suites (pre- and post-si)
- Synthesis support harness
 - sample scripts, SDC/timing constraints for the required flow
- Reference instantiation examples (for AHB and AXI sockets)
- Back-end support @ required process node (PDK access to be provided)
 - Full cycle: synthesis, floor-planning, netlist verification, PaR/CTS/timing closure, DRC, FEV, DFT)
- Support for 1 tapeout up to a year is included

Tools (pre-built & sources)

- GCC based toolchain
 - complier, debugger, linker, functional simulator, binutils, newlib, openocd
- Eclipse-based IDE (Linux, Windows)

FPGA-based SDK

- Sample FPGA project (open design)
- pre-build FPGA and SW images

SW:

- First stage bootloader (SC-BL)
- ZephyrOS /FreeRTOS for the SDK board, including BSP
- Application samples for BM env (tests)

Documentation

- SCRx user manual (quick-start/integration guide)
- SCRx EAS (External architecture specification)
- SCRx ISM (Instruction set manual)
- SCRx SDK guide
- Integration verification environment guide
- Tools guide (IDE & CLI)

Summary

- Syntacore offers high-quality RISC-V compatible CPU IP
 - Founding member, fully focused on RISC-V since 2015
 - Silicon-proven and shipping in full-wafer production
 - Turnkey IP customization services
 - with full tools/compiler support

- Local contact in Japan: Syncom Co., LTD
 - Mr. Katsuhiro Katayama <u>katayama@synkom.co.jp</u>

info@syntacore.com

Thank you!