
Digital Design in Chisel

Martin Schoeberl
mailto:masca@dtu.dk

Technical University of Denmark

November 5, 2020

1 / 46

mailto:masca@dtu.dk


Motivating Example:
Lipsi: Probably the Smallest Processor in the World

I Tiny processor
I Simple instruction set
I Shall be small

I Around 200 logic cells, one FPGA memory block
I Hardware described in Chisel
I Available at https://github.com/schoeberl/lipsi
I Usage

I Utility processor for small stuff
I In teaching for introduction to computer architecture

I The design took place on the island Lipsi

2 / 46

https://github.com/schoeberl/lipsi


The Design of Lipsi on Lipsi

3 / 46



Lipsi Implementation

I Hardware described in Chisel
I Tester in Chisel
I Assembler in Scala

I Core case statement about 20 lines
I Reference design of Lipsi as software simulator in Scala
I Testing:

I Self testing assembler programs
I Comparing hardware with a software simulator

I All in a single programming language!
I All in a single program
I How much work is this?

4 / 46



Chisel is Productive

I All coded and tested in less than 14 hours!

I The hardware in Chisel
I Assembler in Scala
I Some assembler programs (blinking LED)
I Simulation in Scala
I Two testers

I BUT, this does not include the design (done on paper)

5 / 46



Motivating Example: Lipsi, a Tiny Processor

I Show in IntelliJ

6 / 46



More on Chisel Success Stories

I CCC 2020 (in silicon valley)
I 90 participants
I More than 30 different (hardware) companies present
I Several companies are looking into Chisel
I IBM did an open-source PowerPC
I SiFive is a RISC-V startup success

I High productivity with Chisel
I Open-source Rocket chip

I Esperanto uses the BOOM processor in Chisel
I Google did a machine learning processor
I Intel is looking at Chisel
I Chisel is open-source, if there is a bug you can fix it

I You can contribute to the Chisel ecosystem

7 / 46

https://www.sifive.com/


Chisel

I A hardware construction language
I Constructing Hardware In a Scala Embedded Language
I If it compiles, it is synthesysable hardware
I Say goodby to your unintended latches

I Chisel is not a high-level synthesis language
I Single source two targets

I Cycle accurate simulation (testing)
I Verilog for synthesis

I Embedded in Scala
I Full power of Scala available
I But to start with, no Scala knowledge needed

I Developed at UC Berkeley

8 / 46



The C Language Family

C

Verilog

SystemVerilog

C++

SystemC

Java

Scala

Chisel

C#

9 / 46



Other Language Families

Algol

Ada

VHDL

Python

MyHDL

10 / 46



Some Notes on Scala

I Object oriented
I Functional
I Strongly typed

I With very good type inference
I Could be seen as Java++
I Compiled to the JVM
I Good Java interoperability

I Many libraries available

11 / 46



Chisel vs. Scala

I A Chisel hardware description is a Scala program
I Chisel is a Scala library
I When the program is executed it generates hardware
I Chisel is a so-called embedded domain-specific language

12 / 46



A Small Language

I Chisel is a small language
I On purpose
I Not many constructs to remember
I The Chisel Cheatsheet fits on two pages
I The power comes with Scala for circuit generators
I With Scala, Chisel can grow with you

13 / 46

https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf


Tool Flow for Chisel

Hello.scala

scalac

Hello.class

Chisel
JVM

Hello.fir

scala.libchisel3.lib

Verilog 
Emitter

JVM
Treadle

JVM

Hello.vHello.vcd

FIRRTL
JVM

Chisel 
Tester
JVM

good/bad

GTKWave Circuit
Synthesis

Hello.bit

14 / 46



Expressions are Combinational Circuits

(a | b) & ˜(c ˆ d)

val addVal = a + b

val orVal = a | b

val boolVal = a >= b

I The usual operations
I Simple name assignment with val
I Width inference
I Type inference
I Types: Bits, UInt, SInt, Bool

15 / 46



Conditional Updates for Combinational Circuits

val w = Wire(UInt())

when (cond) {

w := 1.U

} .elsewhen (cond2) {

w := 2.U

} .otherwise {

w := 3.U

}

I Similar to VHDL process or SystemVerilog always comb
I Chisel checks for complete assignments in all branches
I Latches give compile error

16 / 46



Registers

val cntReg = RegInit(0.U(32.W))

cntReg := cntReg + 1.U

I Type inferred by initial value (= reset value)
I No need to specify a clock or reset signal

I Also definition with an input signal connected:

val r = RegNext(nextVal)

17 / 46



Functional Abstraction

def addSub(add: Bool, a: UInt, b: UInt) =

Mux(add, a+b, a-b)

val res = addSub(cond, a, b)

def rising(d: Bool) = d && !RegNext(d)

I Functions for repeated pieces of logic
I May contain state
I Functions may return hardware

18 / 46



Bundles

class DecodeExecute extends Bundle {

val rs1 = UInt(32.W)

val rs2 = UInt(32.W)

val immVal = UInt(32.W)

val aluOp = new AluOp()

}

I Collection of values in named fields
I Like struct or record

19 / 46



Vectors

val myVec = Vec(3, SInt(10.W))

myVec(0) := -3.S

val y = myVec(2)

I Indexable vector of elements
I Bundles and Vecs can be arbitrarely nested

20 / 46



IO Ports

class Channel extends Bundle {

val data = Input(UInt(8.W))

val ready = Output(Bool())

val valid = Input(Bool())

}

I Ports are Bundles with directions
I Direction can also be assigned at instantiation:

class ExecuteIO extends Bundle {

val dec = Input(new DecodeExecute())

val mem = Output(new ExecuteMemory())

}

21 / 46



Hello World in Chisel

class Hello extends Module {

val io = IO(new Bundle {

val led = Output(UInt(1.W))

})

val CNT_MAX = (50000000 / 2 - 1).U;

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {

cntReg := 0.U

blkReg := ˜blkReg

}

io.led := blkReg

}

22 / 46



Connections

I Simple connections just with assignments, e.g.,

adder.io.a := ina

adder.io.b := inb

I Automatic bulk connections between components

dec.io <> exe.io

mem.io <> exe.io

23 / 46



Chisel has a Multiplexer

a
y

sel

b

val result = Mux(sel, a, b)

I So what?
I Wait... What type is a and b?

I Can be any Chisel type!

24 / 46



Chisel has a Generic Multiplexer

a
y

sel

b

val result = Mux(sel, a, b)

I SW people may not be impressed
I They have generics since Java 1.5 in 2004

I List<Flowers> != List<Cars>

25 / 46



Generics in Hardware Construction

I Chisel supports generic classes with type parameters
I Write hardware generators independent of concrete type
I This is a multiplexer generator

def myMux[T <: Data](sel: Bool, tPath: T, fPath:

T): T = {

val ret = WireDefault(fPath)

when (sel) {

ret := tPath

}

ret

}

26 / 46



Put Generics Into Use

I Let us implement a generic FIFO
I Use the generic ready/valid interface from Chisel

class DecoupledIO[T <: Data](gen: T) extends

Bundle {

val ready = Input(Bool())

val valid = Output(Bool())

val bits = Output(gen)

}

27 / 46



Define the FIFO Interface

class FifoIO[T <: Data](private val gen: T)

extends Bundle {

val enq = Flipped(new DecoupledIO(gen))

val deq = new DecoupledIO(gen)

}

I We need enqueueing and dequeueing ports
I Note the Flipped

I It switches the direction of ports
I No more double definitions of an interface

28 / 46



But What FIFO Implementation?

I Bubble FIFO (good for low data rate)
I Double buffer FIFO (fast restart)
I FIFO with memory and pointers (for larger buffers)

I Using flip-flops
I Using on-chip memory

I And some more...

I This calls for object-oriented programming hardware
construction

29 / 46



Abstract Base Class and Concrete Extension

abstract class Fifo[T <: Data](gen: T, depth: Int)

extends Module {

val io = IO(new FifoIO(gen))

assert(depth > 0, "Number of buffer elements

needs to be larger than 0")

}

I May contain common code
I Extend by concrete classes

class BubbleFifo[T <: Data](gen: T, depth: Int)

extends Fifo(gen: T, depth: Int) {

30 / 46



Select a Concrete FIFO Implementation

I Decide at hardware generation
I Can use all Scala/Java power for the decision

I Connect to a web service, get Google Alphabet stock price,
and decide on which to use ;-)

I For sure a silly idea, but you see what is possible...
I Developers may find clever use of the Scala/Java power
I We could present a GUI to the user to select from

I We use XML files parsed at hardware generation time
I End of TCL, Python,... generated hardware

31 / 46



Binary to BCD Conversion for VHDL

32 / 46



Java Program

I Generates a VHDL table
I The core code is:

for (int i = 0; i < Math.pow(2, ADDRBITS); ++i) {

int val = ((i/10)<<4) + i%10;

// write out VHDL code for each line

I With all boilerplate 118 LoC

33 / 46



Chisel Version of Binary to BCD Conversion

val table = Wire(Vec(100, UInt(8.W)))

for (i <- 0 until 100) {

table(i) := (((i/10)<<4) + i%10).U

}

val bcd = table(bin)

I Directly generates the hardware table as a Vec
I At hardware construction time
I In the same language

34 / 46



Use Functional Programming for Generators

def add(a: UInt, b:UInt) = a + b

val sum = vec.reduce(add)

val sum = vec.reduce(_ + _)

val sum = vec.reduceTree(_ + _)

I This is a simple example
I What about an arbiter tree with fair arbitration?

35 / 46



Free Tools for Chisel and FPGA Design

I Java OpenJDK 8
I sbt, the Scala (and Java) build tool
I IntelliJ (the free Community version)
I GTKWave
I Vivado WebPACK or
I Quartus
I Nice to have:

I make, git

36 / 46

https://adoptopenjdk.net/
https://www.scala-sbt.org/
https://www.jetbrains.com/idea/download/
http://gtkwave.sourceforge.net/
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html


Chisel in the T-CREST Project

I Patmos processor rewritten in Chisel
I As part of learning Chisel
I 6.4.2013: Chisel: 996 LoC vs VHDL: 3020 LoC
I But VHDL was very verbose, with records maybe 2000 LoC

I Memory controller, memory arbiters, IO devices in Chisel
I Several Phd, master, and bachelor projects:

I Patmos stack cache
I Method cache for Patmos
I TDM based memory arbiter
I RISC stack cache
I and some more

37 / 46



Chisel in Teaching

I Using/offering it in Advanced Computer Architecture
I Spring 2016–2018 all projects have been in Chisel
I Several Bachelor and Master projects
I Students pick it up reasonable fast
I For software engineering students easier than VHDL
I Switched Digital Electronics 2 at DTU to Chisel (spring

semester 2020)
I Issue of writing a program instead of describing hardware

remains

38 / 46



Chisel in Digital Electronic 2

I Basic RTL level digital design wit Chisel
I Chisel testers for debugging
I Very FPGA centric course
I Final project is a vending machine
I All material (slides, book, lab material) in open source
I Tried to coordinate with introduction to programming (Java)

I But sometimes I was ahead with Chisel constructs (e.g.,
classes)

39 / 46



Then there was the Lockdown

I Usually one FPGA board per group
I No group meetings
I Just virtual labs
I Can I do something about it with Chisel?

40 / 46



Teaching Feedback

I General positive feedback of the course
I Most students liked Chisel
I They also liked the (free) Chisel book
I Better link to Java programming (same JVM)

I Similar setup (IDE)
I Lab finish about the same time as last year with VHDL

I So Chisel is not more productive than VHDL?
I But we had the Corona lockdown

41 / 46



A Chisel Book

I Available in open access (PDF)
I In paper from Amazon
I see http://www.imm.dtu.dk/˜masca/chisel-book.html

42 / 46

http://www.imm.dtu.dk/~masca/chisel-book.html


What May Happen with an Open-Source Book

I A free Chinese translation

43 / 46



Furthermore, I got This

I A Japanese translation

44 / 46



Further Information

I https://www.chisel-lang.org/

I http://www.imm.dtu.dk/˜masca/chisel-book.html

I https://github.com/ucb-bar/chisel-tutorial

I https://github.com/ucb-bar/generator-bootcamp

I http://groups.google.com/group/chisel-users

I https://github.com/schoeberl/chisel-book

I https://github.com/schoeberl/chisel-lab

45 / 46

https://www.chisel-lang.org/
http://www.imm.dtu.dk/~masca/chisel-book.html
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-lab


Summary

I Processors do not get much faster – we need to design
custom hardware

I We need a modern language for hardware/systems design
I Chisel is a small language
I Embedding it in Scala gives the power
I We can write circuit generators
I We can do co-simulation
I I can provide further introduction into Chisel including labs

46 / 46


