
GreenRio: A Modern RISC-V Microprocessor
Completely Designed with An Open-source EDA Flow

Yifei Zhu, Guohua Yin, Xinze Wang, Qiaowen Yang,

Zhengxuan Luan, Yihai Zhang, Mingzi Wang, Peichen Guo,

Xinlai Wan, Shenwei Hu, Dongyu Zhang, Yucheng Wang,

Wei Chen, Lei Ren, Zhangxi Tan

RISC-V International open-source Laboratory, Tsinghua-Berkeley Shenzhen Institute (RIOS Lab, TBSI)

Outline

• Background

• GreenRio: Front-end Design

• GreenRio: Back-end Design

• Comparison between Proprietary and Open EDA Tools

• Outlook on Future Open-source RISC-V Design

2

Background

3

⚫ Increasing complexity of IC design in advanced processing technologies

Agile development in fully open source mode

cost, difficulties, risks, policies, ...

1. Bridging the knowledge gap between
classroom and industry

2. Promote RISC-V and OpenEDA’s echo system

Pains

Expectations

⚫Open source EDA tools are evolving but the community lacks designs for references

Threshold for Open CPU design

OpenEda’s iteration RISC-V chip’s development

4

⚫ Comparison of some typical cores hardened by Open EDA

1. Gate counts, area
2. Features of modern processors

Limitations

Design GreenRio EH1 biriscv picorv32a ibex

ISA RV64 RV32 RV32 RV32 RV32

pipeline stage 7 9 6 or 7 6 2 or 3

issue width dual dual dual single single

execution feature out-of-order in-order in-order in-order in-order

gate count (K) 53-120* 100 67 17 20

Efabless tape-out √ × × √ √

⚫ Taped out in the Chipignite and OpenMPW programs

Background

Sky130A Sky130B

Motivations

Can the open toolchains be
used to develop a modern
RISC-V core?

Overview of Our work

High speed, Great automation, Booming ecosystem, …

whole signoff flow

innovations

6

Frontend Flow
Specification, Simulation, and Verification

Choose a Development Language：
System Verilog versus Verilog

• The translation pass rate of open-source tools for some SV-based cores

7

From https://chipsalliance.github.io/sv-tests-results/
*test cores: some open cores which are written in System Verilog *Surelog: A frontend that can convert System Verilog to UHDM file
*UHDM (Universal Hardware Data Model) : A tool that can convert UHDM files to Verilog *Sv2v: A tool that can convert System Verilog to Verilog

• Formal verification tools like “Conformal”
• open ecological chain of chip design.

GreenRio1.0
7-stage RISC-V 64-bit core

Frontend stage : F0-F3 Backend stage:F4-F6

feature list 1. Dynamic branch prediction 2. Out-of-Order Execution
3. RISC-V I Extension, M mode 4. Register Renaming
5. Dual Issue 6. Nonblocking Dcache

https://github.com/b224hisl/rioschip

8

9

OUR DESIGN CARAVEL INTEGRATED CHIP

SOC of GreenRio

https://github.com/daniel-santos-7/leaf-mpw6

Our Design

Wishbone Bus

• Syntax Checking and RTL simulation: Verilator & Lint

• Verification: Open-source benchmarks for RISCV architectures

• Co-simulation: RISCV Sail model

10

Design Implementation and Verification

config / dsl (interpreted by ”antlr” in python)

input config input dsl

input encoding table

output.c

Random Test Generator “Talon”

11

https://gitlab.com/picorio/software/talon-opensource

⚫ Adding some randomness and being more flexible to adjust the test config

⚫ Portable to the RISCOF infrastructures.

Talon

Google DV

12

Co-simulation with RISCV Sail Model
What & Why Sail?

• Accurate transaction level abstraction

• Domain-Specific Language designed for expressing
the ISA semantics

• RISC-V Sail: golden reference for RISC-V architecture

- Reduces the possibility of human error

• Friendly to ISA extension

• Output clear information and registers’ status

• Drawback: Slow C model compilation, but acceptable

https://github.com/riscv/sail-riscv

Vs spike

13

Co-simulation with RISCV Sail Model

• Frontend co-sim • Backend co-sim

Verify them respectively by comparing the results generated by RTL and Sail

14

Backend Flow
Experience, Analysis and Feedback

Technology dependent

Synthesis, floorplan, pnr

15

• Open-source backend EDA tools
• OpenLane: an automated flow performing full ASIC implementation

• Open-source PDK
• Skywater 130nm (Sky130A & Sky130B)

• Open-source external IP
• SRAM blocks compiled by OpenRAM

• Open-source silicon production
• Open Multi Project Wafer (OpenMPW)
• Efabless Chipignite

Open Silicon Implementation Flow

Experience: A Journey of Discovery
• First tape-out project

• Openlane and open pdk

• A series of trials and tribulations

• 5+ solutions tried within 10 days

1st Attempt: Flatten Everything

• Let OpenLane do everything!
• Fixed area (2920x3520nm)
• 8 SRAM blocks, GreenRio core, and SoC
• Automatic floorplan, placement, and routing ….

16

Result
• Placement step failed

Discussion
• Floorplan

• 8 sram macros from Openram

• Needs manual participation

Detailed placement failed

2nd Attempt: Manual Macro Placement

• Manual Floorplan
• Specify the positions of SRAMs
• EDA handles everything else

17

Result
• Routing time is too long:

• More than 10 hours

• SIGINT signal sent

Discussion
• Routing algorithm efficiency?

• convergence is very time-consuming

• Auto placement optimizations?
• Difficulties may be caused by

inappropriate placement

SRAM

add further human intervention

3rd Attempt: Learning from Riscduino

• Harden hierarchical design
• Take riscduino as a reference

• Single 32 bit RISC-V Core based SOC

• Divide into 13 submodules
• Harden submodules
• Harden the full chip with macros

18

Result
• Flow finished

• Completed within 5 hours

• Millions DRC errors
• Errors found by Magic & KLayout

Discussion
• SRAM DRC errors

• Can be waived(from official)

• Routing space too small?
• Only ~3 mm² blank space
• More than 2000 wires between macros

GreenRio
Core

Bus

D$ Controller

I$ Controller

I/O

Instruction cache

Data cache

4th Attempt: Improvement of the 3rd One

• Adjustments based on Attempt 3
• Reduce the number of submodules: integrate the controllers with SRAMs
• Waive SRAMs for DRC check

19

Result
• DRC errors

• Errors found by Magic & KLayout

• Re-floorplan and iterative testing
• Number of DRC errors changed
• Fewer errors (<100)

Discussion
• routing space still limited?

• Still many macros: 11
• Still many macro-macro wires

• More than 1500 wires

adjust the number of submodules, find a successful strategy

Final Attempt: Learning from Failures

• Flatten and hierarchy
• Flatten all modules except SRAMs
• Integration: flattened modules and SRAMs

20

Result
• Flow finished in 4.3 hours
• No DRC or LVS errors found
• Passed precheck & tape-out check

Discussion
• more effective routing algorithm
• Greenrio2: backend optimization exploration

Analysis: Feedback of OpenEda Tools

• What needs to be done manually
• Proper Marco partition
• Reasonable Floorplan

• Expectations and reflections on OpenLane
• Automatic floorplan for complex designs
• Smarter placement and routing algorithms
• Trials and errors are annoying

• OpenLane is based on several components
• OpenROAD, Yosys, Magic, Netgen, CVC, SPEF-Extractor, KLayout

21

22

Comparison between
Proprietary and Open EDA Tools

Comparison: Open vs Proprietary
⚫ Comparison with Proprietary EDA Tools: genius & innovas

1. System Verilog syntax support
2. PnR with high density
3. Logic equivalence check (LEC)
4. Antenna violation fixing
5. PPA optimization
6. Multi-thread acceleration
7. Early check mechanism
8. Tutorial and document

OpenLane Proprietary EDA Gap*1

synthesis run time 6m12s 4m4s 1.5X

gate count after synthesis 53 K 33 K 1.6X

placement & routing time*2 1h58m 43m 2.7X

die area (mm²） 2.02 1.24 1.6X

placement density 32% 45% 1.4X

dynamic power 48.6mW 23.1mW 2.1X

best clock period*3 80MHz 110MHz 1.4X

⚫ Limitations of open-source EDA tools

24

Comparison: Open vs Proprietary

• What is missing?
• Complete support for SV

• Extensive ip usage

• Available LEC
• LEC function is abnormal

• Efficient PnR algorithms
• Higher density

• Parameter searching
• Early termination and endless processing

• Parameter searching and indications

• Accelerate Silicon Research
• Speed up with multi-threading

• PPA optimization

Conclusion: Outlook on Future Open-source RISCV Design

⚫ Great usability of open-source EDA tools
High speed simulation, RISC-V Sail in verification, Automation of OpenLane…

⚫ Several improvements to facilitate iteration
Test generation, Design exploration, PPA optimization, …

Through this RISC-V developing experience

26

（1）Instruction set

（2）Micro-architecture implementation
（3）Design flow with open tools (OpenEDA)

⚫ The RISC-V ISA has sparked a boom in open source hardware field

“Open Chip”

⚫ The development of RISCV core is closely related OpenEDA tools

facilitate the whole process

Fully open source chip design strategy

OpenEDA

Conclusion: Outlook on Future Open-source RISCV Design

bring a new perspective on future RISC-V architecture development

A full-stack open-source design methodology for modern processors

Prove the feasibility of designing high performance chip in open source mode

User defined code
< 10%

 Reduce open chips’ the labor and cost of IP

 Accelerate the customized chip development

 Form open source chip ecology

 Promote the reform of Warehouse-scale computers(WSC)

industry

In future…
Greenrio 1.0

2022.09
Released

Greenrio 2.0
2022.11

Work in progress

…

Conclusion: Outlook on Future Open Source RISC-V Design

28

Thank you

