

GreenRio: A Modern RISC-V Microprocessor Completely Designed with An Open-source EDA Flow

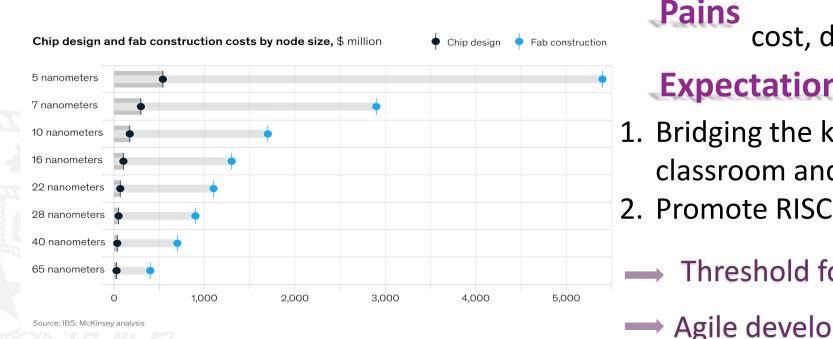
Yifei Zhu, Guohua Yin, Xinze Wang, Qiaowen Yang,

Zhengxuan Luan, Yihai Zhang, Mingzi Wang, Peichen Guo,

Xinlai Wan, Shenwei Hu, Dongyu Zhang, Yucheng Wang,

Wei Chen, Lei Ren, Zhangxi Tan

RISC-V International open-source Laboratory, Tsinghua-Berkeley Shenzhen Institute (RIOS Lab, TBSI)


Outline

- Background
- GreenRio: Front-end Design
- GreenRio: Back-end Design
- Comparison between Proprietary and Open EDA Tools
- Outlook on Future Open-source RISC-V Design

Background

Increasing complexity of IC design in advanced processing technologies

cost, difficulties, risks, policies, ...

Expectations

1. Bridging the knowledge gap between classroom and industry

2. Promote RISC-V and OpenEDA's echo system

Threshold for Open CPU design

→ Agile development in fully open source mode

Open source EDA tools are evolving but the community lacks designs for references **RISC-V** chip's development **OpenEda's iteration**

Background

• Comparison of some typical cores hardened by Open EDA

Design	GreenRio	EH1	biriscv	picorv32a	ibex
ISA	RV64	RV32	RV32	RV32	RV32
pipeline stage	7	9	6 or 7	6	2 or 3
issue width	dual	dual	dual	single	single
execution feature	<mark>out-of-order</mark>	in-order	in-order	in-order	in-order
gate count (K)	<mark>53-120*</mark>	100	67	17	20
Efabless tape-out	<mark>√</mark>	×	×	\checkmark	\checkmark

Motivations

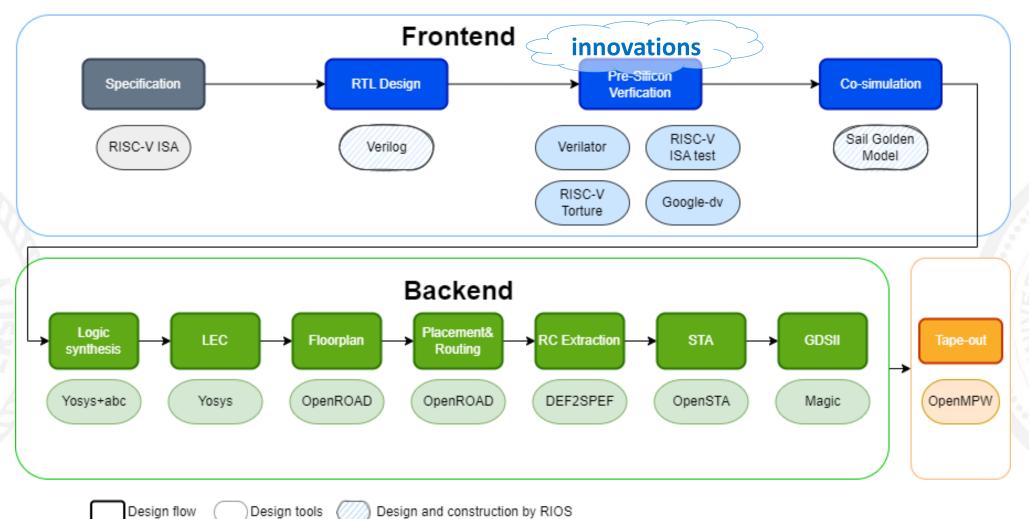
Can the open toolchains be used to develop a modern RISC-V core?

Limitations

1. Gate counts, area

2. Features of modern processors

Taped out in the Chipignite and OpenMPW programs


D	Details Summary Projects	(8) Announcements (0) Manage My	Submissions	Details Summary Projects (104) Announcements (1) Manage My
	Cpu_Camp Add another proje	ict to Shuttle 🚭		hehecore Add another project	to Shuttle 🔂
	View Project 🎓				
	MPW Precheck	Complete 🤗	Re-Submit	View Project 🎓	
				MPW Precheck	Complete 🛇
	Tapeout	Complete 🥝	Re-Submit 🔨		
	Shipping Address	Complete 🥑	Edit	Tapeout	Complete 🛇
	Billing Address	Complete 🥑	Edit	Shipping Address	Complete 🛇
	÷	1			
	Legal	Complete 🥑	^	Legal	Complete 🖉
	Submission	In Review 🛇	Cancel	Submission	In Review 오
		Clav1204			Sky130B
		Sky130A			SKYISUD

Ramo	▲ Type O	Owner	© Country	Previous Participant O	MPW Precheck Ø	Tapeout O	Iterations t
4 bit Ring Counter 2	Digital	Romyo Suriyorani	None	80	Pass	Poss	1
10b ADC and Analog Support - Update 🖻	Analog	Christoph Weiser	Denmark	Tes	Poss	Pass	1
A39 (2*	N/A	Bill Flynn	United States	Tes	N/A	N/A	0
AI-CHIP-4-IN-112	Digital	집대원	None	843	Passa	Poss	3
alu (c'	N/A	AASHISH TIWARY	None	803	N/A	N/A	1
Analog Frontend for Particle Detection Resubm 🖉	Analog	Simon Wald	Austria	199	Peers	Poss	2
Bitcoin Mining Asic g	Digital	Constantine Mantas	United States	1985	Poss	Pass	2
Chaos Automaton 🖉	Digital	Alex Goldstein	None	80	Pass	Pass	2
crypto_oesi28 g*	Digital	Uniel Jaramilio Toral	None	88	Frank	Poss	4
Cryptographically Secure RNO g	Digital	RECEP GÜNAY	Turkey	100	Poss	Poss	1
demo_mpw_project @	N/A	Tanishq E	None	80	N/A	N/A	0
Digital Biquad Filter - mpw7 g	Digital	Tiago Silva	Portugal	Tes	Poss	Poss	2
Enhanced Chaotic Oscillator Design 🗹	Digital	Parker Hardy	None	Tes	Poss	Poss	1
extraction_test_structures ≥	N/A	Andrew P. Lentvorski	None	80	N/A	N/A	0
FABulous_eFPOA_wb @	Digital	Nguyen Dao	United Kingdom	100	Poss	Poss	5
First Silicon (MPW-7) ⊵*	N/A	Horoce	None	803	NA	N/A	0
FPGA_Programming_Management_Unit 🖉	Digital	Allen Boston	United States	80	Poss	Poss	15
Graphics Controller 🖉	Digital	Vijayan Krishnan	None	80	Poss	Poss	1
henecore of	Digital	višel Zhu	None	80	Poss	Poss	6
Hyperspace-resubmission @	Digital	Vladimir Milovanović	Serbio		Pass	Poss	4

Overview of Our work

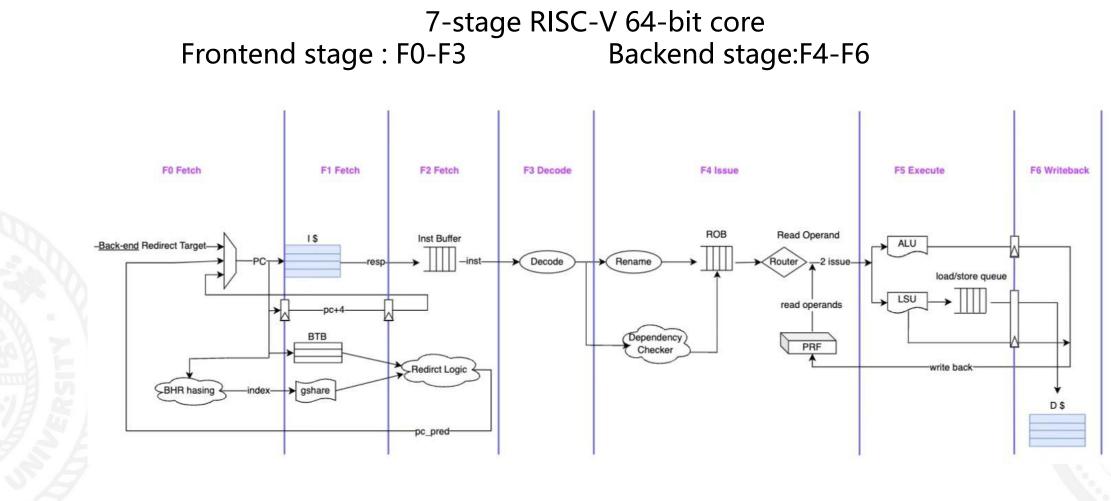
whole signoff flow

Frontend Flow Specification, Simulation, and Verification

Choose a Development Language: System Verilog versus Verilog

• The translation pass rate of open-source tools for some **SV-based** cores

	preprocesso	or	open synthesis tool	open verification tool
test cores*	Surelog*-UHDM*	sv2v*	Yosys	Verilator
ariane	0/1	0/1	0/1	1/1
black-parrot	0/7	0/7	0/7	4/7
earlgrey	0/1	0/1	0/1	0/1
fx68k	0/1	1/1	0/1	1/1
ibex	1/1	1/1	0/1	1/1
rsd	0/1	1/1	0/1	1/1
scr1	0/1	1/1	0/1	0/1
swerv	0/1	1/1	0/1	1/1
TNoC	0/1	0/1	0/1	0/1
picorio1.0	0/1	0/1	0/1	0/1
total tests pass	1/16	5/16	0/16	9/16

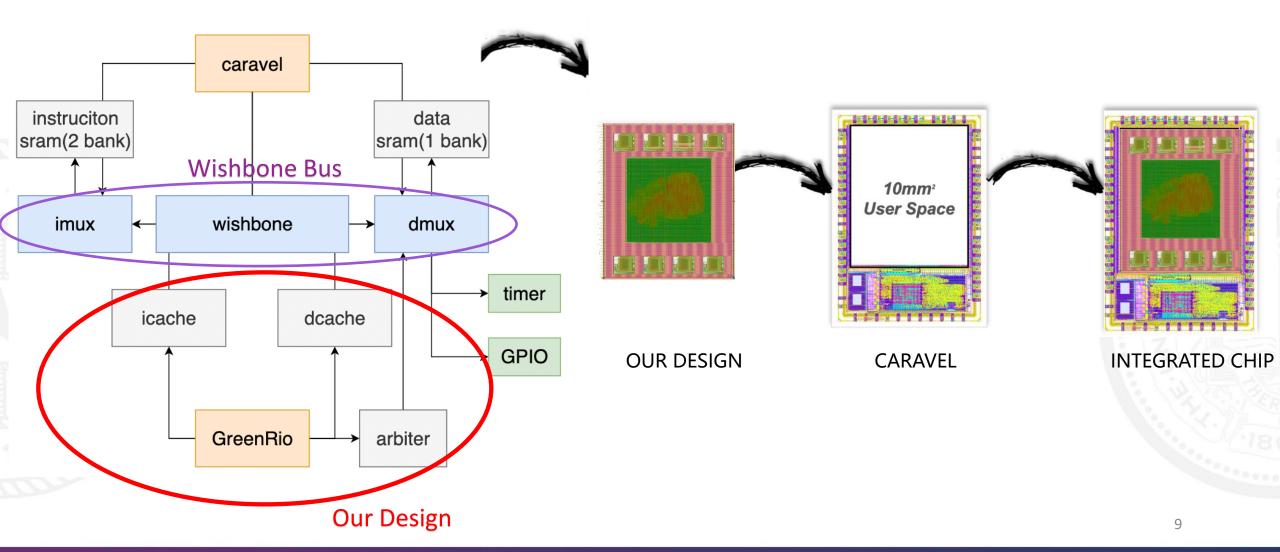

- Formal verification tools like "Conformal"
 - open ecological chain of chip design.

From https://chipsalliance.github.io/sv-tests-results/

*test cores: some open cores which are written in System Verilog *Surelog: A frontend that can convert System Verilog to UHDM file *UHDM (Universal Hardware Data Model) : A tool that can convert UHDM files to Verilog *Sv2v: A tool that can convert System Verilog to Verilog

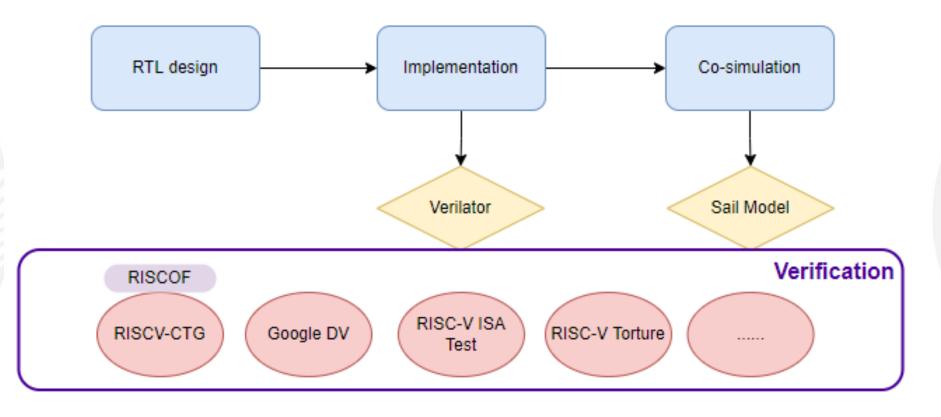
RIOS

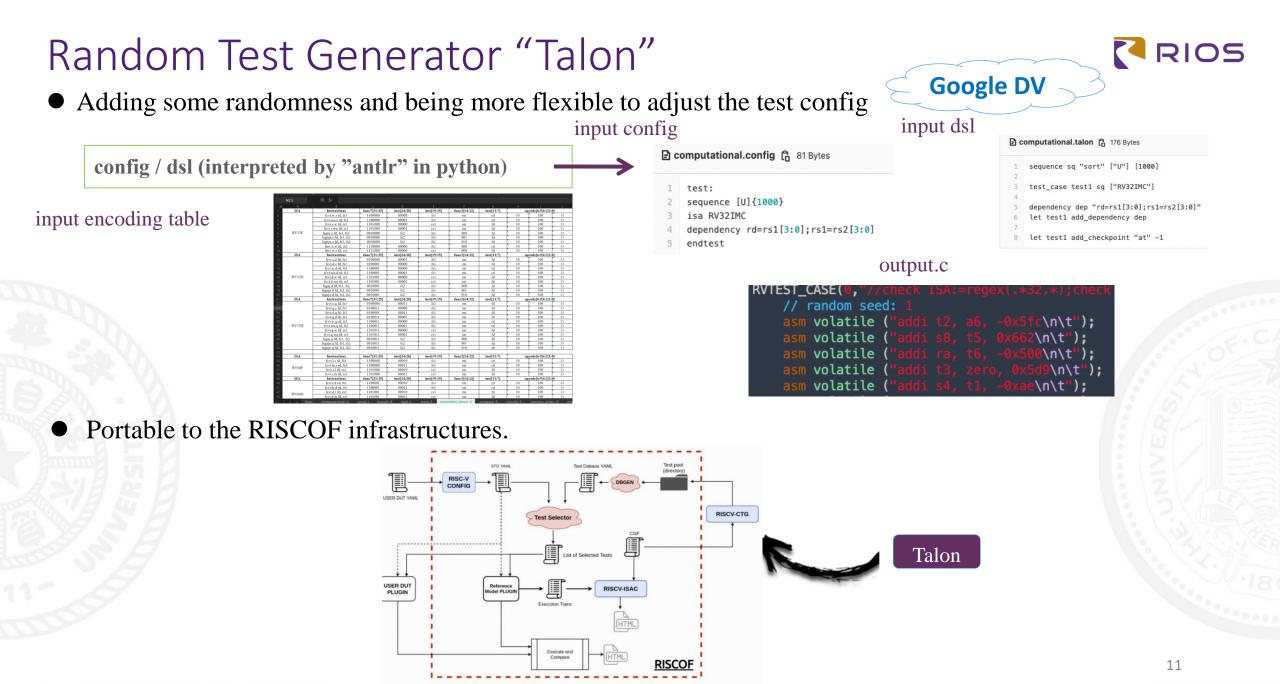
GreenRio1.0


feature list

- 1. Dynamic branch prediction
- 3. RISC-V I Extension, M mode
- 5. Dual Issue

- 2. Out-of-Order Execution
- 4. Register Renaming
- 6. Nonblocking Dcache

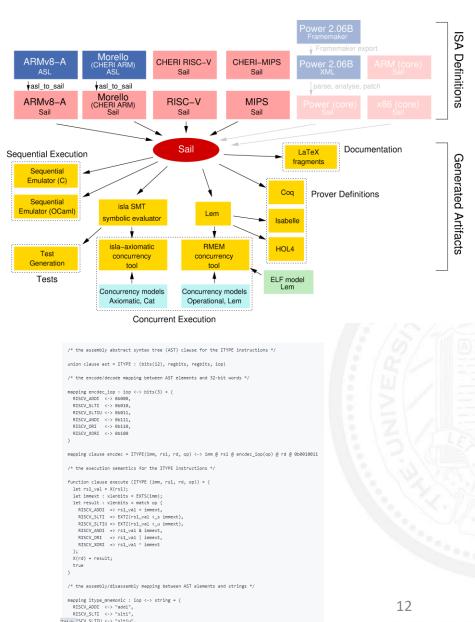



SOC of GreenRio

Design Implementation and Verification

- Syntax Checking and RTL simulation: Verilator & Lint
- Verification: Open-source benchmarks for RISCV architectures
- Co-simulation: RISCV Sail model

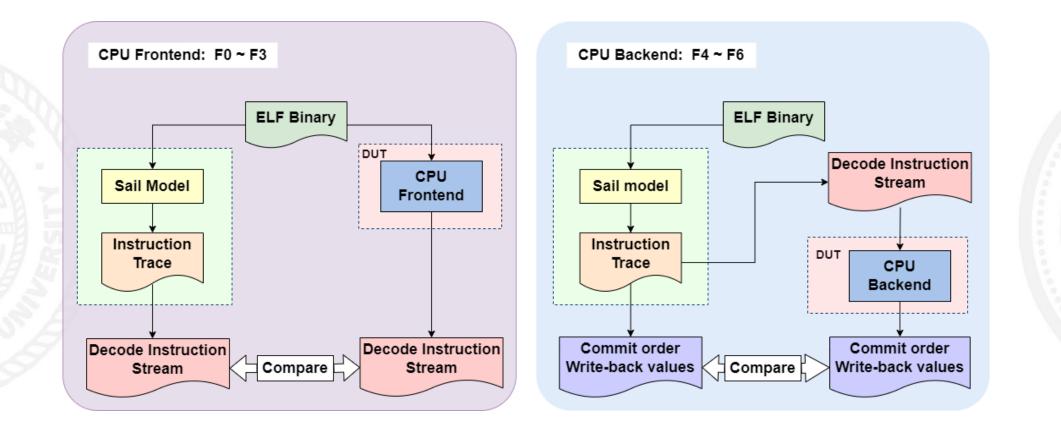
https://gitlab.com/picorio/software/talon-opensource


RIOS

Co-simulation with RISCV Sail Model

What & Why Sail?

- Accurate transaction level abstraction
- Domain-Specific Language designed for expressing the ISA semantics
- RISC-V Sail: golden reference for RISC-V architecture
 - Reduces the possibility of human error
- Friendly to ISA extension
- Output clear information and registers' status
- <u>Drawback:</u> Slow C model compilation, but acceptable



Co-simulation with RISCV Sail Model

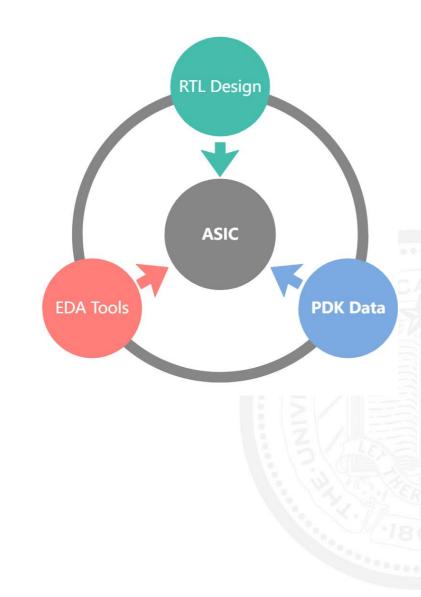
Verify them respectively by comparing the results generated by RTL and Sail

• Frontend co-sim

• Backend co-sim

Backend Flow Experience, Analysis and Feedback

Technology dependent


RIOS

Open Silicon Implementation Flow

- Open-source backend EDA tools
 - OpenLane: an automated flow performing full ASIC implementation
- Open-source PDK
 - Skywater 130nm (Sky130A & Sky130B)
- Open-source external IP
 - SRAM blocks compiled by OpenRAM
- Open-source silicon production
 - Open Multi Project Wafer (OpenMPW)
 - Efabless Chipignite

Experience: A Journey of Discovery

- First tape-out project
- Openlane and open pdk
- A series of trials and tribulations
- 5+ solutions tried within 10 days

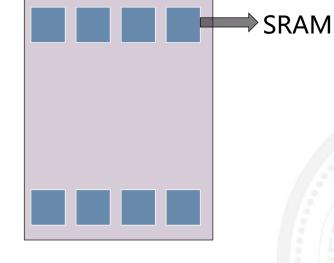
1st Attempt: Flatten Everything

- Let OpenLane do everything!
 - Fixed area (2920x3520nm)
 - 8 SRAM blocks, GreenRio core, and SoC
 - Automatic floorplan, placement, and routing

ResultPlacement step failed

Detailed placement failed

- Floorplan
 - 8 sram macros from Openram
- Needs manual participation



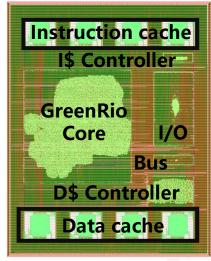
2nd Attempt: Manual Macro Placement

- Manual Floorplan
 - Specify the positions of SRAMs
 - EDA handles everything else

Result

- Routing time is too long:
 - More than 10 hours
- SIGINT signal sent

- Routing algorithm efficiency?
 - convergence is very time-consuming
- Auto placement optimizations?
 - Difficulties may be caused by inappropriate placement


3rd Attempt: Learning from Riscduino

- Harden hierarchical design
 - Take riscduino as a reference
 - Single 32 bit RISC-V Core based SOC
 - Divide into 13 submodules
 - Harden submodules
 - Harden the full chip with macros

Result

- Flow finished
 - Completed within 5 hours
- Millions DRC errors
 - Errors found by Magic & KLayout

- SRAM DRC errors
 - Can be waived (from official)
- Routing space too small?
 - Only ~3 mm² blank space
 - More than 2000 wires between macros 18

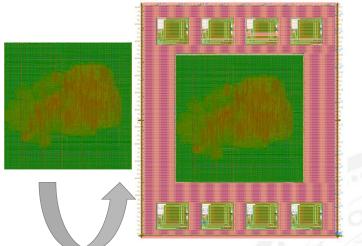
4th Attempt: Improvement of the 3rd One

- Adjustments based on Attempt 3
 - Reduce the number of submodules: integrate the controllers with SRAMs
 - Waive SRAMs for DRC check

Result

- DRC errors
 - Errors found by Magic & KLayout
- Re-floorplan and iterative testing
 - Number of DRC errors changed
 - Fewer errors (<100)

Discussion

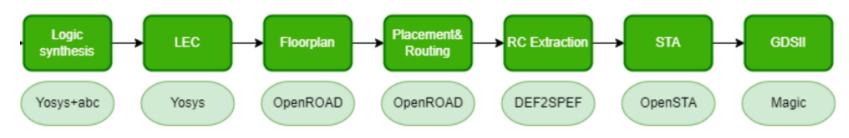

- routing space still limited?
 - Still many macros: 11
 - Still many macro-macro wires
 - More than 1500 wires

adjust the number of submodules, find a successful strategy

Final Attempt: Learning from Failures

- Flatten and hierarchy
 - Flatten all modules except SRAMs
 - Integration: flattened modules and SRAMs

Result


- Flow finished in 4.3 hours
- No DRC or LVS errors found
- Passed precheck & tape-out check

- more effective routing algorithm
- Greenrio2: backend optimization exploration

Analysis: Feedback of OpenEda Tools

- What needs to be done manually
 - Proper Marco partition
 - Reasonable Floorplan
- Expectations and reflections on OpenLane
 - Automatic floorplan for complex designs
 - Smarter placement and routing algorithms
 - Trials and errors are annoying
- OpenLane is based on several components
 - OpenROAD, Yosys, Magic, Netgen, CVC, SPEF-Extractor, KLayout

Comparison between Proprietary and Open EDA Tools

Comparison: Open vs Proprietary

Tutorial and document

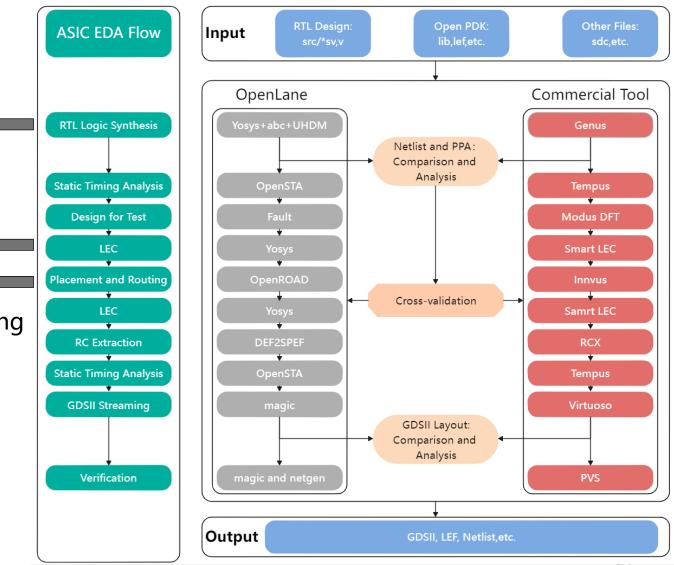
8.

User Experience

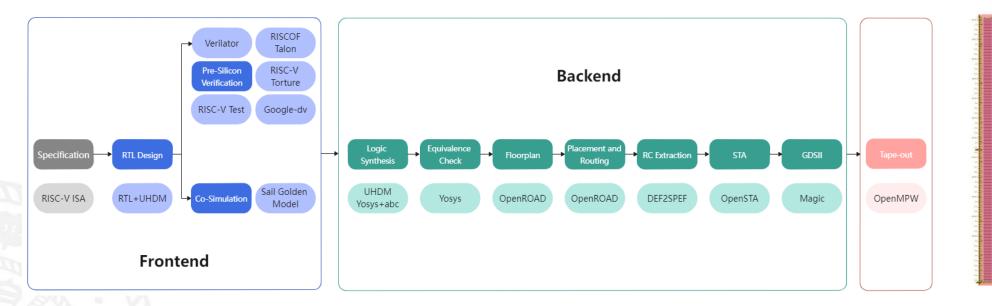
	OpenLane	Proprietary EDA	Gap* ¹
synthesis run time	6m12s	4m4s	1.5X
gate count after synthesis	53 K	33 K	1.6X
placement & routing time* ²	1h58m	43m	2.7X
die area (mm²)	<mark>2.02</mark>	<mark>1.24</mark>	<mark>1.6X</mark>
placement density	32%	45%	1.4X
dynamic power	48.6mW	23.1mW	2.1X
best clock period* ³	80MHz	110MHz	1.4X
 Limitations of open-source EDA tools 		Contraction of the local division of the loc	PRIS TRANS
1. System Verilog syntax support			新学生
2. PnR with high density			
Functional Enhancement 3. Logic equivalence check (LEC)			
4. Antenna violation fixing		A REAL PROPERTY OF A REAL PROPERTY OF	周初日本中
5. PPA optimization			Martin and Antonio
6. Multi-thread acceleration			
7. Early check mechanism			

(a) Layout generated by OpenLane

(b) Layout generated by Commercial EDA


Comparison: Open vs Proprietary

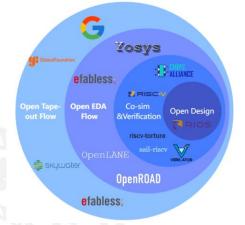
• What is missing?


- Complete support for SV
 - Extensive ip usage
- Available LEC
 - LEC function is abnormal
- Efficient PnR algorithms
 - Higher density
- Parameter searching
 - Early termination and endless processing
 - Parameter searching and indications

Accelerate Silicon Research

- Speed up with multi-threading
- PPA optimization

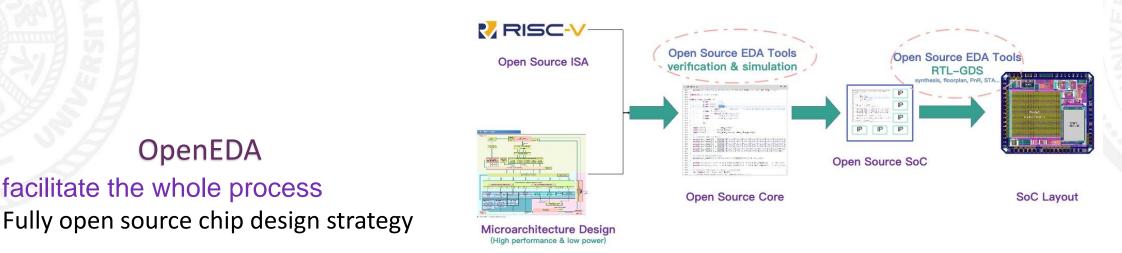
Conclusion: Outlook on Future Open-source RISCV Design



Through this RISC-V developing experience

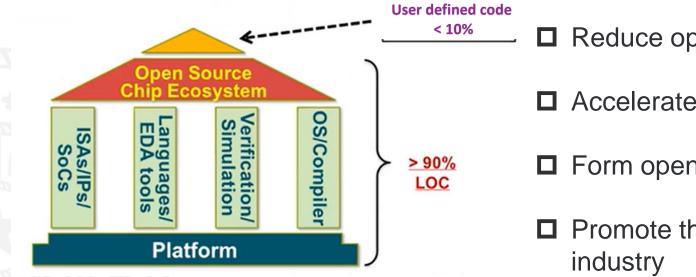
- Great usability of open-source EDA tools
 High speed simulation, RISC-V Sail in verification, Automation of OpenLane...
- Several improvements to facilitate iteration
 Test generation, Design exploration, PPA optimization, ...

Conclusion: Outlook on Future Open-source RISCV Design


• The RISC-V ISA has sparked a boom in open source hardware field

"Open Chip"

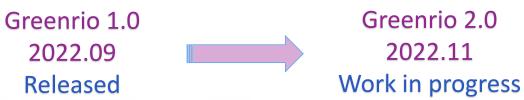
- (1) Instruction set
- (2) Micro-architecture implementation
- (3) Design flow with open tools (OpenEDA)


The development of RISCV core is closely related OpenEDA tools

Conclusion: Outlook on Future Open Source RISC-V Design

A full-stack open-source design methodology for modern processors

Prove the feasibility of designing high performance chip in open source mode



I Reduce open chips' the labor and cost of IP

Accelerate the customized chip development

- □ Form open source chip ecology
- Promote the reform of Warehouse-scale computers(WSC) industry

In future...

bring a new perspective on future RISC-V architecture development

Thank you RIOS