Lowering Barriers to Chip Design using OpenFASoC

Mehdi Saligane Research Scientist University of Michigan <u>mehdi@umich.edu</u>

Nov., 2022

ICEEFAN ENCEEFAN ENCEEFAN EN ROHATSDEVIROHATSDEVIROHATSDEVI

Our Research Group

• Open positions include Analog, Digital and Systems!

Lead Faculty

Mehdi Saligane

PostDoc

Dr. Chanho Kye

PhD Students

Ming-Hung Chen Anhang Li

Ke-Haur Taur (AMD)

MS and Undergrads

- Woobean Lee
- Ali Bilal
- Lucca Reinher
- Jianwei Zhang
- Sai Charan
- Ryan Wans
- Sihan Xie

Visiting Students

- Pranav Lulu (India)
- Ashbir Aviat (Japan)

Background

- DARPA IDEA Program (OpenROAD and FASoC)
- Multi-University and Industry effort
- Member of CHIPS Alliance

- T. Ansell and M. Saligane, "The Missing Pieces of Open Design Enablement: A Recent History of Google Efforts : Invited Paper," 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2020, pp. 1-8.
- Q. Zhang et al., "An Open-Source and Autonomous Temperature Sensor Generator Verified With 64 Instances in SkyWater 130 nm for Comprehensive Design Space Exploration," in IEEE Solid-State Circuits Letters, vol. 5, pp. 174-177, 2022..

FASoC SoCs in TSMC 65 and GF12LP

• Multiple tape-outs in TSMC 65, GF12LP, SkyWater 130nm

(Open)FASOC Now

Working Group - 2021-05-10

https://openfasoc.readthedocs.io/

- T. Ajayi et al, "Fully-Autonomous SoC Synthesis Using Customizable Cell-Based Analog and Mixed-Signal Circuits Generation", IFIP/IEEE VLSI SOC
- T. Ansell and M. Saligane, "The Missing Pieces of Open Design Enablement: A Recent History of Google Efforts : Invited Paper," 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2020, pp. 1-8.
- Q. Zhang et al., "An Open-Source and Autonomous Temperature Sensor Generator Verified With 64 Instances in SkyWater 130 nm for Comprehensive Design Space Exploration," in IEEE Solid-State Circuits Letters, vol. 5, pp. 174-177, 2022..

How it works: Traditional vs Automated Chip Design

Analog vs. Digital design flow

Automated

Manual/Custom

 Analog design flow Significant number of manual and custom steps.

 Digital design (grid-based) flow Almost entirely automated.

Generated Analog into Digital design flow Parse User JSON analog circuit specifications specs SAR ADC Block Diagram VREFH VIN P SW_CTRL FASoC Parameter Search SAMPLE RESULT[7:0] Aux Cell Based on Error/Power COMP CLK 1x 1x Generation/Libraries lib].lefl.gds 32-. 2. NAND-based Optimization SAR Comparator Capacitor DAC UNIT CAP SW VCM Generator VCM COMP LOGIC IN P-OUT COMPOU 115 11= COMP Comparator Aux Cell Best CLK CLK Struct? IN N-Exploration VREFH No ISSCC-2015 SW INPUT Yes D-LDO Temperature Sensor Verilog Generation EADERX1RV L native device VREF -CTRL[N] ERROR DIGITAL DETECTION #2 CTRL Error (e) standar #1 VREG (CMP./ADC) -CTRU(2)-Logic Automated Aux-Cell 2: 1-bit Analog R_{toad} d Cload **Synthesis** Uses Voltage Comparator 는 눈 Aux-Cell 1: Manual/Custom ISSCC-2017 Current Switc CICC-2010 P&R automated DC-DC Converter PLL DCO Digital DRC VREF FF DCO CG ++> CTRL LVS 2:1 SC Conv WORD design PEX Aux-cell 1 Nov CLKGEN flow Coarse Ctrl. Aux-cell 2: (CC) Fine Ctrl. (FC) DCDC CNT Simulation CLK sel_vh[0] -ED Digital Ctrl. | Latched 2:1 Conv 2:1 Conv 2:1 Conv Phase vint[1] F sel vijoj - DCDC_out sel_vi[1] sel_v[[5] including Embedded TDC Stage0 Stage1 Stage5 D CHERAN AN CHERAN A Loop Filter ck0 ck1 4J clk0 clk1 clk0 clk1 CLK REF

Generated Analog into Digital design flow

Generated Analog into Digital design flow

Initially only proprietary design flow

BOBATED EX BOBATED EX BOBATED

Now proprietary or open source design flow

OpenFASoC!

Automated **portable** analog

Trade-offs and Examples

ICEBRAN HOICEBRAN HOICEBRAN HO ROBATSDEM ROBATSDEM ROBATSDEM

Performance / Complexity Tradeoff

• FASoC augments digital flow with APR tool placement/routing constraints and minimizes the (performance loss * complexity)

ADPLL (DCO) - Structured Placement Example

- Patterned placement information generated by python code ⇒ reduce delay mismatch between stages, added Decaps
- Scalable with design parameters

DCO cells

DCO placements with Decap

D-LDO Power Routing Example

Performance loss caused by PnR

Large Series Resistance caused by wiring congestion for increased array size

Narrow

D-LDO Power Routing Example

Constraints to improve performance

- Technology agnostic fencing to constraint placements
- Use power stripes to improve series R problem
- Automatic analysis of technology database file for determining the stripe metal layers
- Taped out in BiCMOS and bulk
 130nm, TSMC 65LP and GF12LP

Open Source IC contributions (tapeouts)

OpenFASOC on MPW-I: 64 sensors + D-LDO

- Actively contributing to the open source community
- 1st open FASoC flow built on top of OpenROAD tools

comparatc

- Focused on the Temp. Sensor Generator
- FASoC testchip in SKY130:
 - Includes Caravel SoC
 - 64 Temp. Sensor Mesh
 - LDO ported (~ a week)
 - Updated strongArm latch
 - 5v native NMOS switch

Test-chip in MPW-I

sponsored by

MPW-I Measurement Results

• 64 sensors array used for low-cost design space exploration

MPW-I Measurement Results

Below 1 °C inaccuracy and SOTA results

MPW-I Measurement Results

- Results Summary and Comparison Table
- Published at the Solid-State Circuits Letters!

	This Work		JSSC '20	JSSC '19	CICC '18	ISSCC '17	
	B3-hd-11	A9-hd-7	A7-hd-9	[5]	[6]	[7]	[4]
Technology	SkyWater 130nm (Open-source PDK)			55nm	65nm	180nm	180nm
Generator- based Design	Yes			No	No	No	No
Supply Voltage (V)	1.8V			0.8 ~ 1.3	0.5	0.8 ~ 1.4	1.2
Area (µm ²)	8095		1770	630000	65000	8865	
Temperature Range (°C)	-40 ~ 80	-20 ~ 100	0 ~ 120	-40 ~ 125	0 ~ 100	-20 ~ 80	-20 ~ 100
Conversion Time (ms)	0.98	125	125	1.31	300	840	8
Inaccuracy (°C)	-0.97/1.08 3σ	-0.59/0.61 3σ	-0.67/0.74 3σ	-0.7/0.7 3σ	-1.53/1.61 Min./Max.	-0.7/+1.3 Min./Max.	-0.22/0.19 3σ
Relative Inaccuracy	1.71%	1.00%	1.18%	0.85%	3.14%	2.00%	0.35%
Power (µW)	17.33	0.25	0.13	9.3	0.000763	0.0013	0.075
Energy/Conv. (nJ)	16.92	31.38	16.25	12.2	0.23	11	0.6
Resolution (mK)	78	21	24	16	300	110	73
Resolution- FoM (pJ·K ²)	101.9	13.4	9.7	3.1	20.7	140	3.2

OpenFASOC on MPW-II: 1st Open Source AMS SoC

- Included initial support for voltage domains in OpenROAD
- Implementation of the OpenTitan SoC using an ECO flow to fix hold timing with degrading the F_{MAX}
- Temperature Sensor generator is using an end-to-end Open Source flow
- Updates to the D-LDO generator:
 - Embedded voltage references
 - Decap cells using MIM cap.
 - \circ Multiple implementations and ${\rm I}_{\rm LOAD}$
- <u>https://efabless.com/projects/239</u>
- <u>https://github.com/msaligane/caravan_openfasoc.git</u>

OpenFASOC on MPW-II: Integrated Temperature Sensors

Sensors are embedded inside the OpenTitan SoC and connected through tilelink

The temperature sensor generator uses a fully open source flow

OpenFASOC on MPW-II: D-LDO generator

Voltage Reference with symmetrical placement

Array of D-LDOs

OpenFASOC on MPW-II: OpenTitan SoC

- 1st SoC using AMS components
- The Opentitan SoC contains
 - UART, SPI interfaces
 - 16KB of SRAM (OpenRAM)
 - D-LDO is used to power-up all the blocks
 - All Peripherals are connected through Tilelink
- Timing has been carefully checked and an ECO flow has been used to avoid altering the F_{MAX} while fixing hold violations

Open Source RoT (PULP) on MPW-6

OpenFASOC on MPW-II: OpenTitan SoC -ECO flow

- Custom automated ECO flow to close timing
- Modular flow using both proprietary and open source tool based flows

	OpenROAD flow	OpenROAD + ECO
Clock (ns)	48	48
Fmax (MHz)	20.8	20.8
Setup Time (ns)	11.01	9.44
Hold Time (ns)	-1.72	0.01
No of violations	1493	0
No of iterations for ECO	0	5

Hold fixing table with and without ECO

OpenFASOC on MPWs: OpenROAD tooling

- The OpenROAD's team is actively improving their tools and adding new design features
- Closely working with UCSD and ARM to enable an AMS flow (power gating, UPF flow)

Custom nets python scripts are used for special routing

Example of code updates to create new PD features

File name	Func/Proc
OpenROAD/src/init_fp/src/InitFloorplan.cc (Floorplan)	updateVoltageDomain()
OpenROAD/src/pdngen/src/PdnGen.tcl (Floorplan)	generate_stripes{}
OpenROAD/src/replace/src/replace.tcl (Placement)	global_placement{}

Example of create_voltage_domain usage

Tape Outs in GF12LP - OpenTitan SoC

- 1st tapeout in GF12LP using OS tools (OpenROAD)
- PD and timing optimization using OpenROAD
- Used a modular flow to smoothly fill-in the gaps using proprietary tools
- Signoff using PT
 - @TT|25C|0.8v|funcmax
 - 350MHz
- Temperature sensors
 - T_{RANGE} : -20 to 100°C
 - Error: +/- 0.2°C (post-PEX)

Die Photo of FASoC's 2021 testchip in GF12LP Including RAMs, LDOs, BLE, CDC and an OpenROAD based implementation of the Opentitan SoC

Taped-out Teststructures using OpenFASOC

Control Electronics for Quantum Computers

Quantum computer: < 20 mK

RABORATS RABORATS RA

Mix of AC and DC signal required to control and read the Qubits

Digital

Inverters, ring oscillators

Analog

 Voltage reference, Low Noise Amplifiers

https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html; https://www.cnet.com/news/google-quantum-supremacy-only-first-taste-of-

computing-revolution, Amundson, J.; Sexton-Kennedy, E. J. E. W. C., Quantum Computing. 2019

Requirement of Low Operating Power

Low power operation

Cryogenic Test Structures with NIST on MPW-5

- Partnership with NIST:
 - Re-characterization of SKY130 with wide range temperatures including cryogenic (4K)
 - Automated test structures platform

Cryogenic Test Structures - test interface

Interleaved Placement in OpenROAD

• Uses DEF manipulation using Python but could be integrated within OpenROAD

Interleaved Placement in OpenROAD

Implemented 3 Standard Cell Inverter Classes:

HD, HS, and HVL inverters

9 Additional OSU Standard Cell Inverters

12T_hs, 12T_ls, 12T_ms, 15T_hs, 15T_ls, 15T_ls, 15T_ms, 18T_hs, 18T_ls, 18T_ms

Gdsfactory - automated custom structures

MIM Cap Generation using Gdsfactory

GDSFACTORY Array creation routine

Example - Array of Flying MiM caps + Custom Padring

GDSFACTORY Pad-ring place & route routine

MIM Cap Generation using Gdsfactory

- Computes the grid and places capacitor on grid
- Generates connecting metals (with minimum metal spacing)
- Replicates and connects the structures to pads

TRATSTRY BOHATSTRA BOHATSTRA

Resultant Test Die

Major Highlights!

- Over 1400 Pads
- 400+ Transistor Structures
- 30 Capacitor Test Structures
- 24 Ring Oscillators
- 18 line and via chain modules
- 7 Diode Test Structures

https://github.com/msaligane/openfasoc_cryo_caravel

3 Tapeouts Already!

ICEORAN ENCERTAN ENCERTAN EN ROBATSDEMBORATSDEMBORATSDEM

aractor

-

2.4GHz LC-VCO in MPW-7

- Automated using OpenFASOC calls gdsfactory
- A handful of variants designed by a high school student in less than a month
 - https://github.com/ryanrocket/vco-design-notebook/blob/main/VCONotebook.ipynb

2.4GHz LC-VCO in SKY130 (cont.)

An additional 10GHz oscillator was included that relied solely on parasitic capacitances (no tuning). A resized XCP and current source was needed for this.

(8 - 12 GHz)

New tools and Python-based APIs

Generation write_gds()

Final GDS

https://github.com/idea-fasoc/OpenFASOC

AVILLEBRAVAVIL

-fasoc/OpenFASOC

Performance / Complexity Tradeoff (OpenFASOC) FASoC augments digital flow with APR tool placement/routing constraints and

• FASoC augments digital flow with APR tool placement/routing constraints and minimizes the (performance loss * complexity)

Get involved!

Chipathon

https://sscs.ieee.org/about/solid-state-circuits-directions/sscs-picodesign-contest

Code-a-Chip Notebook Competition ISSCC'23

https://github.com/sscs-ose/sscs-ose-code-a-chip.github.io

Deadline: Nov. 21st

Key Event in 2020: First Open-Source PDK

Google Partners with SkyWater and Efabless to Enable Open Source Manufacturing of Custom ASICs

First open source foundry PDK enables full manufacturing chain for open hardware;

Google-sponsored MPW shuttle program now accepting design submissions

BLOOMINGTON, Minn. and SAN JOSE, Calif. – November 12, 2020 – SkyWater Technology, the trusted technology realization partner, and Efabless, a crowdsourcing design platform for custom silicon, today announced design submissions are now being accepted for a series of Google-sponsored open source Multi-Project Wafer (MPW) shuttles that will run at SkyWater. Through a partnership between Google, SkyWater and Efabless, open source designs selected by the program will be fabricated at no cost to the designers. The MPW program is enabled by the first foundry-supported open source process design kit (PDK) for 130 nm mixed-signal CMOS technologies (SKY130 process). The initiative will enable a complete open source manufacturing supply chain for custom application specific integrated circuits (ASICs) and has been discussed in a series of talks produced by the FOSSi (Free and Open Source Silicon) Foundation including presentations by Google and Efabless.

Google-Sponsored Free Shuttle Runs

GOOGLE's MPW-ONE

First MPW Overbooked 45/40

45 designs submitted in 30 days!

60% by first time designers!

Source: efabless

Democratizing IC Design: The SSCS PICO Program

The Solid-State Circuits Society is committed to improving diversity, inclusion, and accessibility in integrated circuit (IC) design. We envision a future in which chips can be designed through a web browser, by anyone, anywhere, and through open worldwide collaboration.

Through its Platform for IC Design Outreach (PICO) program, the SSCS is working with the rapidly growing open-source community to help accelerate the construction of the required ecosystem. Our goal is to help build and connect to new communities that share our excitement about IC innovation and its democratization toward a new wave of global impact.

https://sscs.ieee.org/about/solid-state-circuits-directions/sscs-pico-program

SSCS Sponsored Fab Runs in 2021

2021 IEEE SSCS "PICO" Design Contest

- 61 design proposals
 18 selected
 11 taped out
- Free IEEE & SSCS student memberships offered to all participants
- Pakistan team starting a new SSCS Student
 Branch Chapter

Designs Completed & Taped Out

- Tape-out via Efabless chiplgnite (130nm SkyWater)
- All designs shared on GitHub

	Function	Team	Chip URL	
1	5G bidirectional amplifier	Pakistan3 (FAST National University)	_	
2	Wireless power transfer unit	Pakistan2 (FAST National University)	https://efabless.com/projects/560	
3	Variable precision fused multiply-add unit	Pakistan1 (FAST National University)		
4	Oscillator-based LVDT readout	India2 (Anna University)	https://efabless.com/projects/474	
5	Temperature sensor	India1 (Anna University)		
6	GPS baseband engine	India3 (Anna University)		
7	Ultra-low-power analog front-end for bio signals	Brazil2 (U. Federal de Santa Catarina)	https://efabless.com/projects/476	
8	TIA for quantum photonics interface	USA4 (University of Virginia)	https://efabless.com/projects/470	
9	Bandgap reference	Egypt (Cairo University)	https://efabless.com/projects/473	
10	Neural network for sleep apnea detection	USA2 (University of Missouri)		
11	SONAR processing unit	Chile (University of the Bio-Bio)	https://efabless.com/projects/540	

B. Murmann, "SSCS PICO Contestants Cross the Finish Line," https://ieeexplore.ieee.org/document/9694491

2022 Chipathon – Selected Teams

22 teams selected, see:

https://sscs.ieee.org/about/solid-state-circuits-directions/sscs-pico-program

SSCS TC "Open-Source Ecosystem"

Boris Murmann Stanford USA

Thomas Brandtner Infineon Austria

Rana Muhammad FAST National Univ. Pakistan

Francisco Brito Filho Fed. Univ. Semiarido

Brazil

Harald Pretl

Kepler Univ., Linz

Austria

J. Dhurga Devi Anna Univ. India

Priyanka Raina Stanford USA

Jaeduk Han Hanyang Univ. Korea

Mehdi Saligane Univ. Michigan USA

Chiraag Juvekar Apple USA

Mirjana Videnovic-Misic Silicon Austria Labs Austria

The end!

Bonus slides

Questions

- 1. How do I help the OpenFASOC project move forward?
 - a. Joining or introduce your work in our Weekly call
 - b. Send Pull Requests on Github
 - c. Read our New Contributors guidelines on: https://openfasoc.readthedocs.io/en/latest/developers-guide.html
 - d. All the above
- 2. Why do you think open-source analog automation would succeed?
 - a. Access to more flexible and up-to-date open-source software development tools
 - b. Open collaboration and exchange of expertise
 - c. Open PDK and shuttles and shuttles allow to lower barrier to chip design and reduces the risk of failure
 - d. All the Above

FASoC: Fully-Autonomous SoC Synthesis

- Correct-by-construction SoC design leveraging IP-XACT and Arm Socrates
- Analog generation tools for xDC, PLL, SRAM, DCDC, temp sense, CP Amp, ΣΔ ADC

OpenFASoC - Portable Analog

- Analog generators Power DCDC + LDO, Temperature Sensors, PLLs, ADCs.
- Example mixed signal SoC integration.
- Silicon proven with increasingly more tape outs, increasingly faster!
- Fully open source flow using fully open source tooling (OpenROAD, Xyce).
- Demonstrating acceleration of velocity and productivity.

130nm

Planar Bulk

SKY130 - GF12LP

12nm

FinFet

>10x X cheaper!

Same **fully** open source tools Same scripting generators

SAR ADC Common Centroid Placement

 Symmetrical Placement of unit caps and switches

Output Spec.	CDL	PEX	
F _{SAMPLING} (MHz)	1		
Unit Cap Value (fF)	2.6		
Area (mm ²)	-	0.04	
Power (µW)	6.72	11.2	
Effective Number of Bits	7.86	7.75	
Bite strain and the s			
6.5 0 2 4 6 8 Number of Vcm Swit	10 12 14 iches	16	

SAR ADC Block Diagram

Open Source RoT

