
DESIGNWARE IP DATASHEET

synopsys.com/designware

ASIP Designer is a tool suite for the design, verification and programming of
application-specific instruction-set processors (ASIPs).

ASIPs form the basis of many modern multicore SoCs, which have to integrate
dozens of complex system functions, each requiring its own optimal balance
of performance, flexibility, energy consumption, communication, and design
time. The traditional model of a general-purpose processor core with a number
of fixed hardware accelerators is no longer sufficient to meet the demands of
today’s applications. ASIPs established themselves as a third implementation
option for designs in which the power, performance and area efficiency
of a standard processor IP is not sufficient, and fixed-function hardware
accelerators are not flexible enough.

ASIP Designer supports all aspects of ASIP-based design, including
architectural exploration and profiling, hardware generation, and verification.
In addition, it generates a software development kit (SDK) featuring
highly optimizing C and C++ compilation, instruction-set simulation, and
debugging technology.

ASIC
FPGA

FMT ALU OPD

FMT MPY OPD

FMT OPD SH

1

2

3

4

1

2

3

4

Algorithm
C/C++

Synthesizable RTL
VHDL/Verilog

Processor model
nML

RTL generator

Test program generator

VCSDebugger
& profiler

Asm

Optimizing C/C++ compiler

Link

Binary

Instruction
set simulator

Design
Compiler

ASIP synthesisArchitectural optimization
and software development

Instruction
set

Refinement

SDK generation

Architectural optimization

Hardware generation

Verification

Verification

User-defined
algorithm

User-defined
architecture

Virtual prototype

Figure 1: ASIP Designer Tool Flow

ASIP Designer supports a broad range of architectures, including small
microprocessors, DSP-dominated cores, VLIW and vector processors, as
well as programmable data-paths. The ASIP’s architecture is modeled in
nML, a high-level language at the abstraction level of a programmer’s manual
of a processor. The nML description captures processor resources, the
instruction set, the instruction pipeline, and the bit-accurate behavior of the
processor’s primitive operations and I/O interfaces. All ASIP Designer tools use
the same nML model, guaranteeing full consistency between the hardware
implementation and the SDK, and between different simulation abstraction
levels in the SDK.

Highlights
• Accelerates the design, programming

and verification of ASIPs

• Based on a single description of the
ASIP in nML

• Enables rapid architectural exploration,
based on unique compiler-in-the-loop
technology

• Patented automatic software
development kit (SDK) creation including:

 – Retargetable C/C++ compiler

 – Retargetable instruction set simulator,
both cycle- and instruction-accurate

 – Retargetable linker, assembler
and disassembler

• Automatic register transfer-level (RTL)
hardware generation

• Automatic generation of synthesis scripts
supporting the Synopsys reference
methodology

ASIP Designer: Design Tool for Application-
Specific Instruction-Set Processors

https://www.synopsys.com/designware-ip.html

2

Retargetable C/C++ Compiler
The compiler offers the following features:

• A unique approach to automatically adapt (retarget) the compiler to the processor architecture, based on the nML processor
modeling language

• Architectural exploration using Compiler-In-The-Loop technology. Users can describe alternative processor architectures in nML
and compare their performance by compiling benchmark C/C++ programs onto each architecture and evaluating the results

• Support for a wide range of processor architectures, from general-purpose processors to highly specialized ASIPs

• Support for the following programming languages:

 – C, optionally extended with user-defined data types and operators using C++ classes, member functions
and function overloading

 – C++ (leveraging LLVM compiler front-end technology extended for user-defined data-types, native pointers,
multiple address spaces, addressable unit sizes wider than byte)

 – OpenCL C (OpenCL kernel language)

• Efficient compiler optimizations, including:

 – High-level code optimizations, including alias analysis for effective software pipelining and exploitation of various
addressing schemes

 – Code selection, exploiting the use of specialized instruction patterns (not restricted to tree patterns)

 – Register allocation, supporting distributed register files where instruction-level parallelism depends on the register choice.
Separate register allocation and register assignment passes for effective interaction with scheduling

 – Efficient implementation of subroutines, including inter-procedural context-save optimization, multiple register sets for fast
context switching, and reverse in-lining to reduce code size

 – Scheduling with software pipelining of loops, including exploitation of negative dependency lengths (aggressive scheduling)
to deal with long latencies in deep pipelines

 – Support of advanced control-flow constructs in C programs for vector processors, using per-lane predication and vector
predicate stacks

 – Whole-function vectorization and barrier synchronization of OpenCL C programs

 – Support of intrinsic function calls and of in-line assembly code

• Light-weight C/C++ library stack (libc++lite) tuned to embedded applications, offering maximum functionality while avoiding
code bloat

• Generation of binary machine code in the Elf object-file format, including source-level debug information in Dwarf sections

• Integrated in ASIP Designer’s graphical development environment (IDE), including an option for integration in Eclipse

Key Architectural Features Supported by the Retargetable Compiler

Arithmetic • General-purpose as well as application-specific arithmetic units

Data types • General-purpose as well as application-specific data types
(e.g. fractional, custom floating point, complex, and vector data-types)

Pipeline

• From shallow to deep instruction pipelining
• Exposed or protected pipeline
• Multi-cycle and multi-word instructions, delay slots
• Resolution of pipeline hazards by the compiler

Instruction format • From orthogonal to highly encoded instruction formats
• Support of variable-length instructions and instruction compaction

Memory architecture

• Support of multiple memories and multiple memory ports
• Large variety of addressing modes, including: indexed, direct and indirect addressing, with post-

modification, circular buffering, etc.
• Up to 64-bit address space support
• Both little-endian and big-endian supported

Register architecture • From general-purpose register-files to special-purpose registers
• Support of coupled operand and/or result registers

3

Key Architectural Features Supported by the Retargetable Compiler

Control flow
• Subroutine and interrupt support, with or without a software stack
• Support of hardware loop instructions, residual control using mode registers, and predicated

execution (including per-lane predication for vector processors)

Parallelism
• Support of multi-threaded processors
• Instruction level parallelism (e.g. VLIW) and data-level parallelism (e.g. SIMD), including combinations

of both

Figure 2: Development perspective in ASIP Designer’s IDE, showing
compilation of an MPEG4 motion estimation function on an ASIP

Retargetable Instruction-Set Simulator
• A unique approach to instruction-set simulator (ISS) retargetability, based on the nML processor modeling language

• Fast cycle-accurate simulation using just-in-time compilation techniques, monitoring the full instruction pipeline

• Fast instruction-accurate simulation using just-in-time compilation techniques

• Cycle- and instruction-accurate simulation models are both generated from the same nML description, eliminating the need to
keep two models in sync

• Loading of Elf executable files, optionally containing source-level debug information in Dwarf format

• Integrated in ASIP Designer’s graphical development environment (IDE), including an option for integration into Eclipse. This IDE
can also connect to the processor hardware for on-chip debugging (e.g. via a JTAG port, with built-in support for a wide variety of
3rd-party debug cables)

• Source-level debugging, showing correspondence between executed instructions and source-code statements, and between
register or memory locations and source-code variables

• Support of breakpoints on instructions and on source-code statements, and of watch points on register and memory locations

• Profiling of instructions, storages, functional units, pipeline hazards

• Application programming interface to 3rd-party simulators and integrated development environments, for co-simulation of the
ASIP and its environment

• SystemC TLM2 interface generation allows for pre-silicon software development using virtual prototypes, such as those created
with Synopsys Virtualizer

• Multi-ASIP simulation and on-chip debugging, supporting breakpoint export and synchronous stepping

• Native simulation: bit-accurate execution of C/C++ application programs written for the target ASIP architecture, applying the
target architectures’ data types and operators while executing on a 32-bit host workstation

4

Figure 3: Debug perspective in ASIP Designer’s IDE, showing instruction-set
simulation of an MPEG4 motion estimation function on an ASIP

Retargetable Back-End Tools
• A retargetable linker to build executable files from separately compiled Elf/ Dwarf object files for different source

files or functions

• A retargetable assembler and disassembler, to translate machine code from assembly into binary format and back.
The assembly language syntax is user-definable and is specified as part of the processor’s nML model

RTL Generator
ASIP Designer includes a retargetable RTL hardware generator. Once an ASIP has been optimized using the retargetable C/C++
compiler and instruction-set simulator, the RTL hardware generator provides a quick and efficient route to hardware for the new ASIP,
including the following features:

• Automatic translation of the processor’s nML description into synthesizable VHDL or Verilog code

• Supports a structural design style, using synchronous logic

• The generated RTL description can be synthesized efficiently with standard, commercially available ASIC or FPGA synthesis tools

• Automatically creates synthesis scripts for Design Compiler Graphical, including support for the physical guidance approach for
IC Compiler that tightens the correlation of timing, area and power to enable significant reduction in routing congestion

• Generates files and scripts for ProtoCompiler, enabling a rapid path towards HAPS® FPGA-based prototyping systems, including
on-chip software debugging support

• Existing hardware blocks can be integrated in the RTL design

• Automatic generation of on-chip debugging logic (e.g. using JTAG), interoperable with industry-standard third-party
debugging solutions

• Debugging support for ASIPs integrated in an ARM® CoreSight™ system

• Many configuration parameters can be defined by the user, to influence the RTL style

• Supports low-power design optimizations, such as selective clock gating per register and operand isolation

ASIP Verification
ASIP Designer offers extensive support for verification of ASIP designs, including the following:

• Reduced verification effort resulting from the automatic consistency between generated RTL and ISS implementations
(due to single-source ASIP description in nML)

• Automatic support of validation against known good targets (host workstation, standard compiler) provided by automatic

5

support of native execution (bit-accurate execution of C/C++ application programs written for the target ASIP architecture on a
32-bit host workstation)

• Automatic test creation for analyzing and diagnosing an ASIP’s ability to support C/C++ compiler generation

• Formal analysis of processor properties such as resource conflicts, pipeline hazards and unique instruction encodings

• Regression suite for basic C/C++ code compliance testing, including methods to extend the test suite for ASIP-specific testcases

• Regression testing automation

• SystemVerilog class generation based on a processor’s nML model, to be used in SystemVerilog programs to generate random
instruction sequences, supporting the UVM verification methodology

• Constrained-random test program generation with ISS to RTL comparison and customizable verification coverage analysis

Example ASIP Models
Designers can choose from an extensive library of example ASIP models provided as nML source code. In combination with ASIP
Designer, these models can be used as a starting point for architectural exploration, and customer-specific production designs.

Microntrollers
Tmicro, Tnano Compact 16-bit RISC microcontrollers

DLX (family)
Variants of Hennessy and Patterson’s 32-bit RISC microcontroller with 5-stage protected pipeline—
Additional family members implement hardware floating-point units, narrow SIMD andvarious
forms of multi-threading

Tmcu 32-bit microcontroller with 16/32-bit variable-length instructions

Tzscale 32-bit microcontroller featuring the RISC-V instruction-set architecture

Trv (family)

Microcontrollers featuring the RISC-V instruction set architecture. Variants include versions with
a 32-bit and 64-bit wide data path, with 3-stage and 5-stage pipeline version, and with custom
extensions supporting zero-overhead hardware loops and Load/stores with post-modify address
modes

Generic DSPs and Parallel Processors

Tdsp
16/32-bit DSP with single multiply/accumulate unit, dual load/store units with indirect addressing
and address post-modification, and 3-way instruction-level parallelism in 16/32-bit variablelength
instructions

Tvec (family)
Variants of a wide SIMD processor, with per-lane predication controlled by either predicate registers
or a predicate stack, and gather/scatter-based vector addressing—Additional family
member supports compilation of OpenCL C kernels

Tvliw (family) Variants of a 4-slot VLIW processor, with predication of VLIW slots and instruction compaction

Domain-specific Processors

Tmotion ASIP for acceleration of motion estimation kernels in video coding, using custom data-path
elements, SIMD and instruction-level parallelism

Tcom8 IP for acceleration of communication kernels, with 8-lane SIMD and complex-number hardware

FFTcore ASIP for scalar implementation of complex FFT

MXcore ASIP for floating-point matrix processing in communication kernels

Primecore ASIP for acceleration of FFT and DFT based on the prime-factor algorithm (e.g. in LTE modems),
using custom data-path elements, SIMD and instruction-level parallelism

JEMA, JEMB Dual ASIP for high-resolution JPEG encoding, respectively accelerating DCT and VLC

Tgauss ASIP illustrating vectorization and memory management for image processing

MMSE ASIP for acceleration of matrix operations as used in Minimum Mean Square Error Equalization

Tvox ASIP for acceleration of voxel processing for SLAM (simultaneous localization and mapping)

For more information about Synopsys’ ASIP design tools, visit: synopsys.com/asip

http://www.synopsys.com/asip

