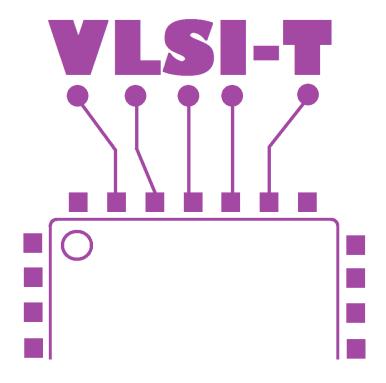
VLSI Technology page:

VANGUARD (VG) – The First Open Source RISC-V SoC Project in Vietnam

QUYNH DO-NGOC (QUYNHDO.ICD@GMAIL.COM)

QUAN NGUYEN-HUNG (NGUYENQUAN.ICD@GMAIL.COM)


& VLSI TECHNOLOGY PAGE'S COWORKERS

Agenda

- ► Introduction to VLSI Technology page
- ► Vanguard (VG) open source project
 - VG structure
 - Roadmap and Status
 - Purpose
 - Resource

Introduction to VLSI Technology page

Introduction to VLSI Technology page

Engineers

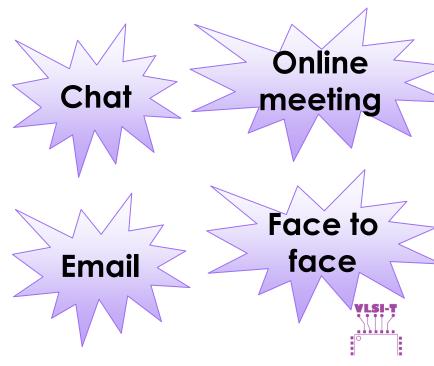
Technical Students

VLSI technology page (Draft version)

More technical students

More sharing

More the public discussion


9/14/2020

Activities

- Discuss and select topics
- Establish a team for each topic
- ► Make a plan and investigate the selected topics
- Create examples and tutorials
- Publish results as documents or videos

The current content is focused on the design and verification but we are investigating the backend phase.

Flexible communication

#VLSITechnology [VLSIE002]

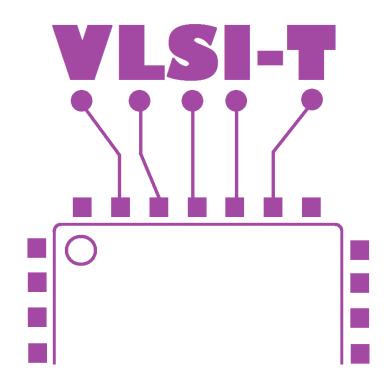
#VLSITechnology - Hướng

dẫn biên dịch và mô phóng..

#VLSITechnology [VLSIE002]

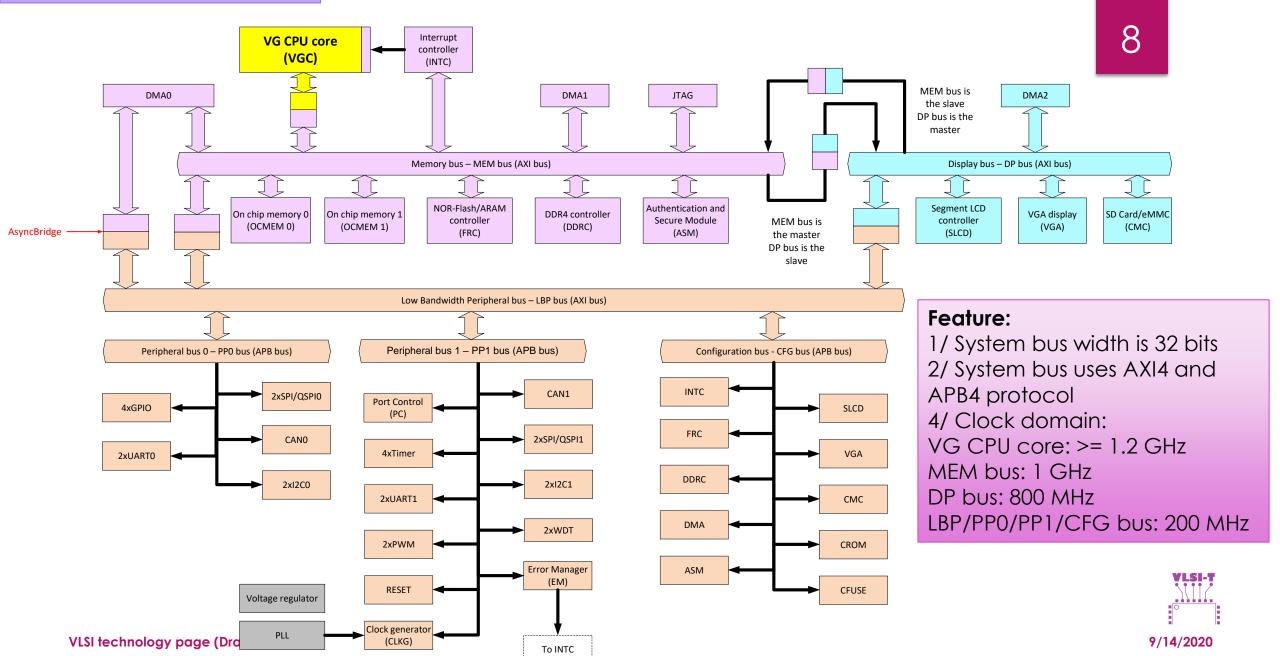
VLSI technology page (Draft version)

coEnv


(cEnv)

cTest

#VLSITechnology [VLSIE002]


#VLSITechnology [VLSIE002]

Vanguard (VG) Open Source Project

VG Diagram

Detail Function Block

No.	Sub-System	Description
1	VGC	RISC-V CPU core executes all programs
2	Memory (MEM) bus	Interrupt controller (INTC), JTAG interface (JTAG), Watchdog timer (WDT), Direct Memory Access (DMA), On-chip memory (OCMEM), External Asynchronous NOR-Flash/RAM controller (FRC), DDR4 SDRAM controller (DDRC), Authentication and Security Management (ASM)
3	Display (DP) bus	Direct Memory Access between two sub-system (DMA), Segment Liquid Crystal Displays controller (SLCD), Video Graphics Array controller (VGA), SD Card/eMMC memory controller (CMC)
4	Low Bandwidth Peripheral (LPB) Bus	Timer controller (Timer), Universal Asynchronous Receiver/Transmitter (UART), Pulse-width modulation (PWM), General purpose input/output (GPIO), Reset controller (RESET), Clock controller and generator (CLKG), Serial Peripheral Interface (SPI/QSPI), Controller Area Network (CAN), Inter-Integrated Circuit (I2C), Error management (EM)
5	Configuration (CFG) bus	Read/Write to all configuration registers of peripherals in AXI bus

0

Why we choose RISC-V for SoC

- ► First thing: RISC-V is Royalty Free Industry standard Instruction Set Architecture (ISA)
 - It is easy for everyone to access and use ISA in their open projects
 - The open source community will grow strongly like the ISA becomes the more and more popular. In the hardware world, RISC-V role will be same as Linux OS in the software world.
- ▶ RISC-V is not only built on FPGA but also proven by the silicon.
 - Some chips are commercial such as products from SiFive*1, Syntacore*2, etc.
- ► According to SiFive website, the performance of RISC-V chips are comparable to ARM chips. Concretely, SiFive U8-Series RISC-V chip designs should be competitive with ARM Cortex-A72.
- This ISA supports both 32-bit instructions and 16-bit compressed instructions: they can be used in many chips from a small embedded to a high performance processor.
 VLSI-T

^{*1:} https://www.sifive.com

^{*2:} https://syntacore.com

Roadmap

First release (CPU, Bus system and On-chip Memory + trial FPGA)

Second release (Full system includes all IPs) Third release (Develop some applications on the SoC)

2020

2022

2023

RISC-V Core Development Plan

- ► First and second version: RISC-V CPU is open source core from Roa logic*1 with following modifications:
 - Bus interface unit has been changed from AMBA AHB interface to AMBA AXI interface to improve the system performance
 - Besides, the unit test environment of CPU is also updated. Currently, the modification has been completed and verified with these sets of instructions: rv32ui and rv32si from riscvtests*2
- ▶ Third version: RISC-V core is improved
 - Architecture: upgrade this core to a superscalar processor

^{*1:} https://roalogic.com

^{*2:} https://github.com/riscv/riscv-tests

Current Status: Focus on the phase 1

- RISC-V CPU Core modification and unit test are completed
- Bus systems
 - The design and the basic verification of APB bus is completed. The full simulation environment is being built
 - AXI bus is on-going the design phase
- On-chip Memory is completed
- Others: SPI, UART and CAN are completed

VLSI-T

Purpose

Supplying an open source SoC to study, research, and use in Vietnam

Developing a RISC-V SoC on FPGA

Building a RISC-V community in Vietnam

Resource

- Core team: 10 engineers and 2 students
- Short-term supporters (3 months): 5 to 10 members
- Advantage:
 - Many students and engineers have a need for academic research
 - Knowledge of RISC-V started to be popular in Vietnam beginning from the universities and institutes
 - Participants will have access right to project knowledge and data soon
- Disadvantage:
 - The activities of group are not regular
 - The working time cannot be strictly because membership is voluntary and cannot join full-time
 - No member has a lot of experience in back-end phase

THANK FOR YOUR ATTENTION!

"

VLSI TECHNOLOGY PAGE – VIETNAM

VLSI technology page (Draft version) 9/14/2020