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• The successor of Secure Sockets Layer (SSL)

• Among the most commonly used security protocols over the Internet

• The latest proposal is v1.3 [1] (2018)

• Is equipped with many current robust cryptography algorithms

Introduction (1/2)

Transport Layer Security (TLS)

• TLS 1.3 workflow is not fixed yet; many cryptographic functions are left as optional

This work aiming for developing TLS-1.3-oriented cryptographic accelerators

for RISC-V System-on-Chip (SoC)

https://datatracker.ietf.org/doc/html/rfc8446
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The key algorithms:

• ECDSA (must)

• Ed25519 (should)

• HMAC (must)

• AES-GCM (must)

• ChaCha-Poly (should)

• RSA (must)

• SHA2 (must)

• SHA3 (should)

Introduction (2/2)
List of supported algorithms used in TLS-1.3
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RISC-V-based SoC (1/2)

1. Processor:

• Rocket [2] or BOOM [3]

• RV64GC or RV32IMAC

• Configurable number of cores

2. Configurable caches sizes

3. PCIe can be included/excluded

4. Can use on-chip RAM or off-chip DDR (or both)

1
2

23

5

4

6

*Buses are TileLink [4]

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/MM.2019.2897782
https://www.sifive.com/documentation/tilelink/tilelink-spec/
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RISC-V-based SoC (2/2)

5. Boot ROM for ZSBL,

MMC for FSBL & linux image,

and UART for communication.

6. Each crypto-core is optional and can be 

included/excluded.

1
2

23

5

4

6

*Buses are TileLink [4]

https://www.sifive.com/documentation/tilelink/tilelink-spec/
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3. TLS 1.3 Crypto-core (1/9) TRNG

[4] TRNG (2021)

True Random Number 

Generator (TRNG)

• TRNG core is based 

on frequency 

collapse and ring 

oscillators.

• TRNG core passed 

NIST 800-22, 800-

90B, and AIS31 

tests.

https://doi.org/10.1109/ACCESS.2021.3099534
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[5] RSA (1978)

RSA-1024

• Minimize the area by 

using less “big”-

registers as much 

possible

• Small tasks are done 

by primitives such as 

getNumBits (number 

of meaning LSBs), 

±, and <
• Primitive functions 

execute 32-bit at a 

time

3. TLS 1.3 Crypto-core (2/9) RSA-1024

https://doi.org/10.1145/359340.359342
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[6] GCM (2005)

Advanced 

Encryption 

Standard (AES) –

Galois/Counter 

Mode (GCM)

• Support 

encryption and 

decryption.

• Support 128-

bit and 256-bit.

3. TLS 1.3 Crypto-core (3/9) AES-GCM

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
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[7] SHA3 (2018)

SHA3-512

• Support 512-bit.

• The core was 

developed based 

on an open-

source project 

[7] (2018).

3. TLS 1.3 Crypto-core (4/9) SHA3-512

https://opencores.org/projects/sha3
https://opencores.org/projects/sha3


14[8] HMAC-SHA2 (1997)

Hash-based 

Message 

Authentication 

Code (HMAC) -

SHA2

• Has two 

modes:

HMAC-SHA2 

or SHA2 only.

• Support: 256-

bit, 384-bit, 

and 512-bit.

3. TLS 1.3 Crypto-core (5/9) HMAC-SHA2

https://datatracker.ietf.org/doc/html/rfc2104
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QR sub-module

3. TLS 1.3 Crypto-core (6/9) ChaCha20

ChaCha20

• A stream cipher that was standardized 

recently [9] (2018).

• Can work alone or team-up with 

Poly1305 to perform Authenticated 

Encryption with Additional Data 

(AEAD)

[9] AEAD Protocol (2018)

https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc8439
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MulAcc sub-module

3. TLS 1.3 Crypto-core (7/9) Poly1305

[9] AEAD Protocol (2018)

Poly1305

• A Message 

Authentication Code 

(MAC) that was 

standardized recently [9] 

(2018).

• Can work alone or team-

up with ChaCha20 to 

perform Authenticated 

Encryption with 

Additional Data (AEAD)

https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc8439


17[10] AEAD Impl. (2021)[9] AEAD Protocol (2018)

3. TLS 1.3 Crypto-core (8/9) AEAD
Authenticated Encryption with Associated Data (AEAD)

• Use ChaCha20 as a stream cipher and Poly1305 as a MAC.

• The ChaCha20 & Poly1305 cores are the same as mentioned earlier.

https://doi.org/10.1109/ISOCC53507.2021.9614016
https://www.rfc-editor.org/rfc/rfc8439
https://www.rfc-editor.org/rfc/rfc8439


18[12] EdDSA (2017)[11] ECDSA (2001)

3. TLS 1.3 Crypto-core (9/9) EC/Ed-DSA

Ecliptic Curve (EC) + Edwards-curve (Ed)

Digital Signature Algorithm (DSA)

• Support four curves: three of ECDSA and 

one of EdDSA

• Support 256-bit, 384-bit, and 512-bit

• Support functions: gen-key, sign, and 

verify

[13] EC/Ed-DSA Impl. (2022)

https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/rfc/rfc8439
https://doi.org/10.1007/s102070100002
https://doi.org/10.3390/cryptography6020025


1. Introduction

2. RISC-V-based SoC

3. TLS 1.3 Cryptographic Accelerators

4. Experimental Result

5. Conclusion

19



20

Build report with the FPGA chip of Virtex-7 (XC7VX485TFFG1761-2)

4. Experimental Result (1/9) Virtex-7

Core TRNG
RSA-

1024

AES-

GCM
SHA3

HMAC-

SHA2

ChaCha2

0
Poly1305 AEAD

EC/Ed-

DSA

LUT 308 10,051 2,554 8,622 2,166 2,357 1,176 5,239 43,131

Register 563 6,284 3,650 2,231 1,351 1,088 1,506 3,377 9,021

Block 

RAM
0 0 0 0 2 0 0 0 7.5

DSP 0 0 0 0 0 0 7 7 0

Fmax 

(MHz)
N/A 102.44 150.35 118.91 139.59 123.06 112.37 111.98 97.4
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4. Experimental Result (2/9) Virtex-7

SoC resources utilization pie chart:

All crypto-cores + Single-core RV32IMAC Rocket

13.66%
6.92%

9.25%

1.99%

2.35%

2.17%

1.08%
4.82%

39.69%

7.93% 10.12%

LUT Ultilization

Rocket: RV32IMAC
IBex
RSA1024
HMAC-SHA2
AES-GCM
ChaCha20
Poly1305
AEAD
EC/Ed-DSA
SHA3-512
the rest

20.47%

5.02%

12.83%

2.76%

7.45%2.22%3.07%

6.89%

18.41%

4.55% 16.33%

Register Utilization
Rocket: RV32IMAC
IBex
RSA1024
HMAC-SHA2
AES-GCM
ChaCha20
Poly1305
AEAD
EC/Ed-DSA
SHA3-512
the rest

*Note: “the rest” means all the buses, TRNG

and utility-group peripherals such as GPIO, SPI, boot ROM, etc.
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4. Experimental Result (3/9) ROHM180 synthesis

Build report with ROHM180 process library (synthesis result)

Core TRNG RSA-1024 AES-GCM SHA3
HMAC-

SHA2
Chacha20 Poly1305 AEAD

EC/Ed-

DSA

@SYN

#Cell 2,223 34,496 17,764 24,087 12,675 11,782 9,328 24,558 161,943

Area (𝝁𝒎𝟐) 55,851 777,479 474,954 581,908 515,131 288,656 275,650 645,688 3,567,223

SRAM
(𝝁𝒎𝟐) 0 0 0 0 181,926.55 0 0 0 0

(%) 0.00% 0.00% 0.00% 0.00% 35.32% 0.00% 0.00% 0.00% 0.00%

Power (mW) 10.745 208.277 137.822 309.365 122.866 105.104 98.282 212.169 1,251.86

Fmax (MHz) 119 93 114 129 94 94 94 94 93

@PNR

#Gate 5,866 82,827 51,586 63,221 53,656 31,625 29,417 69,478 371,014

#Cell 2,261 36,085 19,416 24,461 12,951 12,778 9,991 26,029 163,999

Area (𝝁𝒎𝟐) 90,768 1,037,057 666,160 811,858 688,293 410,419 392,675 898,855 4,756,399

Density 71.83% 77.29% 78.78% 78.85% 75.44% 79.49% 77.39% 78.08% 75.48%

Power (mW) 7.241 105.8 70.78 207.9 76.16 41.26 51.29 104.2 560.2

Fmax (MHz) 119 101 113 112 100 100 100 100 100

#MOSFET 27,542 362,608 234,180 273,250 242,918 135,960 136,308 313,842 1,649,480
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4. Experimental Result (4/9) ROHM180 synthesis
SoC resources utilization pie chart:

All crypto-cores + Single-core RV32IMAC Rocket

33.06%

6.51%

5.61%

3.73%3.61%2.22%
2.13%

4.87%

25.75%

4.40%
8.12%

Area Utilization

Rocket: RV32IMAC
IBex
RSA-1024
HMAC-SHA2
AES-GCM
Chacha20
Poly1305
AEAD
EC/Ed-DSA
SHA3-512
the rest

19.80%

7.32%

5.76%

4.15%

3.86%

2.25%2.79%5.68%

30.52%

11.33%

6.54%

Power Utilization

Rocket: RV32IMAC
IBex
RSA-1024
HMAC-SHA2
AES-GCM
Chacha20
Poly1305
AEAD
EC/Ed-DSA
SHA3-512
the rest

*Note: “the rest” means all the buses, TRNG,

and utility-group peripherals such as GPIO, SPI, boot ROM, etc.
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• One chip was fabricated in ROHM180 in 

Feb. 2022 (expected to be delivered in 

June 2022)

• Single-core Rocket with ISA of 

RV32IMAC

• All the crypto-cores for TLS-1.3 are 

included

4. Experimental Result (5/9) ROHM180 chip

Floorplan
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4. Experimental Result (6/9) ROHM180 chip

Layout

Key features summarize
Core Rocket ×1

ISA RV32IMAC

Cache $I =16KB and $D = 16KB

Crypto-cores: TRNG, RSA, AES-GCM, SHA3, HMAC-

SHA2, ChaCha20, Poly1305, AEAD,  & EC/Ed-DSA

@SYN

#Cell 460,195

Area (𝝁𝒎𝟐) 14,744,115

SRAM
(𝝁𝒎𝟐) 3,386,029

(%) 22.97%

Power (mW) 3,075

Fmax (MHz) 18

@PNR

#Gate 1,535,403

#Cell 466,882

Area (𝝁𝒎𝟐) 20,799,437

Density 71.43%

Power (mW) 1,992

Fmax (MHz) 71

#MOSFET 7,982,582
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4. Experimental Result (7/9) ROHM180 chip
Chip resources utilization pie chart

34.52%

24.66%
5.47%

5.33%

4.67%

5.02%

3.49%

3.56%

2.75%

2.07% 8.46%

Area

RocketTile
EC/Ed-DSA
RSA-1024
ChaCha-Poly
SHA3-512
IbexTile
AES-GCM
HMAC-SHA2
ChaCha20
Poly1305
the rest
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4. Experimental Result (8/9) ROHM180 chip
Chip resources utilization pie chart

22.56%

29.24%

5.50%

6.00%

11.54%

2.95%

3.46%

3.82%

2.79%

2.68%
9.47%

Power

RocketTile
EC/Ed-DSA
RSA-1024
ChaCha-Poly
SHA3-512
IbexTile
AES-GCM
HMAC-SHA2
ChaCha20
Poly1305
the rest
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4. Experimental Result (9/9) Crypto-core driver
Initial test and driver for using crypto-cores were developed

Tests at FSBL (M-mode)

before boot into Linux

Driver and tests (U-mode) after boot into Linux
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5. Conclusion (1/1)

• RISC-V-based: a complete SoC implementation aiming for TLS-1.3 was developed based 

on RISC-V architecture.

• TLS-1.3 Crypto-cores: a set of newly developed cryptographic accelerators were 

introduced, including TRNG, RSA-1024, AES-GCM, SHA3, HMAC-SHA2, ChaCha20, 

Poly1305, AEAD, and EC/Ed-DSA.

• Flexibility & compact: the whole SoC fitted nicely in a 5×5-𝑚𝑚2 of ROHM180 chip. 

Many crypto-cores have multi-mode and multi-function such as HMAC-SHA2 and EC/Ed-

DSA.

• The proposed SoC was verified & tested on both FPGA and VLSI implementations.



Thank You

31
Tokyo, 2nd June, 2022
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