RuyiSDK: Get ready for 1 million RISC-V software developers

Wei Wu (吴伟) wuwei2016@iscas.ac.cn Director of PLCT Lab, ISCAS

About Me (@lazyparser)

- RISC-V ambassador (^o^)/
- **PLCT Lab** (2019-): Compilers, Runtimes, and Simulators
 - TARSIER Project (2022-): Make RISC-V a tier-1 support for FOSS community.
- Member of RISC-V International Foundation (RVI) Technical Committee (TSC)
- RISC-V China Community (CNRV) Core Organizer (2020-)
- Member of LLVM BoD (2022-)
- Chair of HelloGCC(2013-) and HelloLLVM (2018-2022)

Agenda

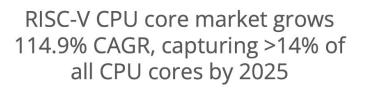
- 1. RISC-V is the future. We're seeing it.
- 2. Why RuyiSDK: The Motivation
- 3. The Mission of RuyiSDK
- 4. RuyiSDK architecture and components
- 5. Beyond RuyiSDK

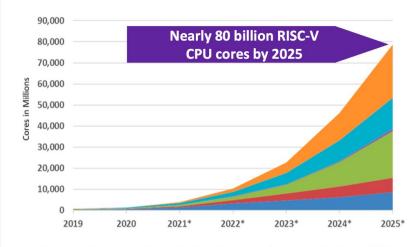
Three Basic Observations (Axioms)

- 1. Moore's Law has physical limits, but there is no limit to the **demand** for computing power.
- 2. The **complexity** of a software system grows superlinearly.
- 3. The number of **developers** capable of managing the complexity of software development is limited.

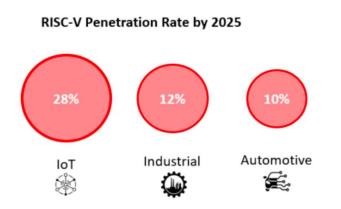
A few conclusions deduced from three basic observations

- Domain Specific Architecture (DSA) will be everywhere.
 - There will inevitably be many (free and open) instruction sets.
- Open source software eats everything.
 - Only a few open source communities can survive in every field.
 - Only a few instruction sets will be maintained by the open source community for a long time with high quality.



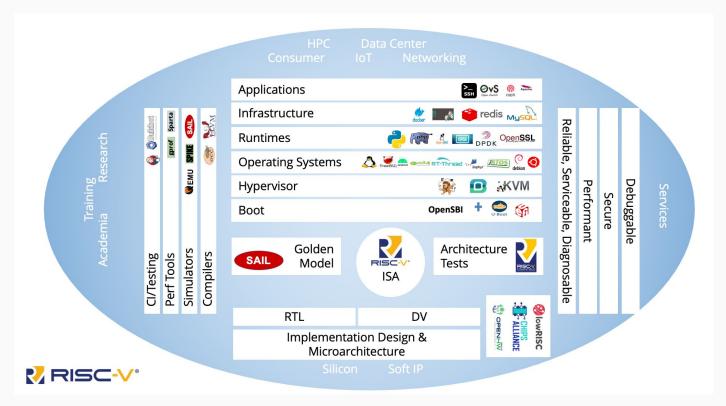

Open Software/Standards Work!

Field	Standard	Free, Open Impl.	Proprietary Impl.
Networking	Ethernet, TCP/IP	Many	Many
OS	Posix	Linux, FreeBSD	M/S Windows
Compilers	С	gcc, LLVM	Intel icc, ARMcc
Databases	SQL	MySQL, PostgresSQL	Oracle 12C, M/S DB2
Graphics	OpenGL	Mesa3D	M/S DirectX
ISA	??????		x86, ARM, IBM360

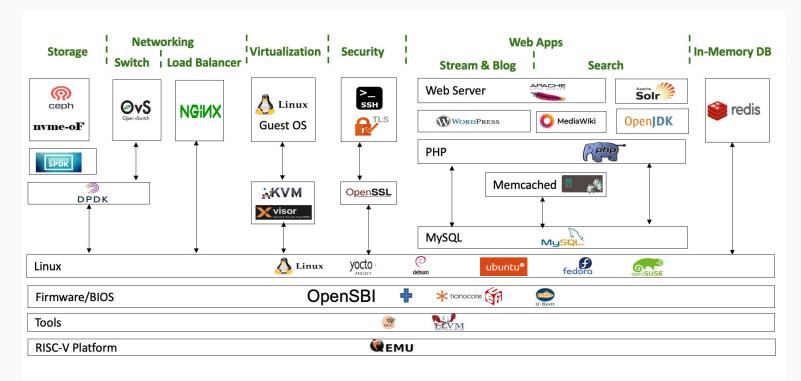


- Why not successful free & open standards and
- free & open implementations, like other fields
- Dominant proprietary ISAs are not great designs

Computer Consumer Communications Transportation Industrial Other RISC-V



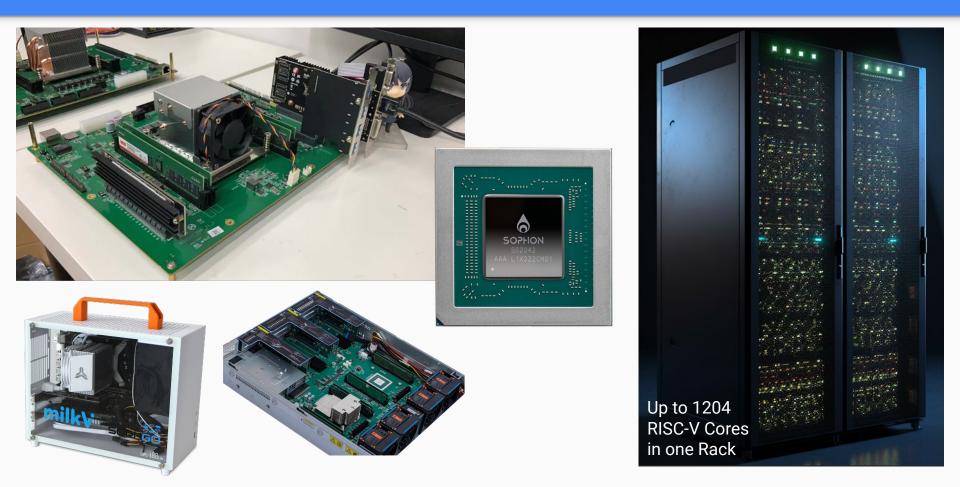
"The rise of RISC-V cannot be ignored... RISC-V will shake up the \$8.6 Billion semiconductor IP market." -- William Li, Counterpoint Research


Source: Counterpoint Research, September 2021

Once you choose RISC-V, you will immediately have all the software tools you need.

Mark Himelstein, <u>https://github.com/cnrv/RVSC2022-Slides/blob/main/Mark-Himelstein-Keynote.pdf</u>

Open source software in several mature commercial areas already supports RISC-V.


Mark Himelstein, https://github.com/cnrv/RVSC2022-Slides/blob/main/Mark-Himelstein-Keynote.pdf

But... Is RISC-V an Embedded Thing (yet)?

But... Is RISC-V an Embedded Thing (yet)?

Since 2023, The Answer is NO.

Now we can have SG2042(Workstation/Server) and TH1520(Netbook) in hands.

https://chipsalliance.org/announcement/2022/04/21/alibaba-cloud-announced-progress-in-porting-ar https://www.techradar.com/news/alibaba-cloud-is-close-to-getting-android-working-on-risc-v-silicon

Thursday, May 5th, 2022 | Spring 2022 RISC-V Week

Android 12 running on RISC-V with optimised Al performance

Progress in Q1 2023

Emulator with graphics support and ART Java interpreter mode!

Supporting Android and ecosystem adoption of new key RISC-V specifications

- Vector extensions in QEMU, LLVM, and throughout libraries
- Continuing to pick up or extend use of Zbb (bit manipulation) optimizations

Nerds Talking to Nerds About RISC-V (Day-1) → https://www.bilibili.com/video/BV1z84y1T7Vi/

OpenJDK19 will natively support RISC-V *RISC-V compiler support merged on March 24th, 2022*

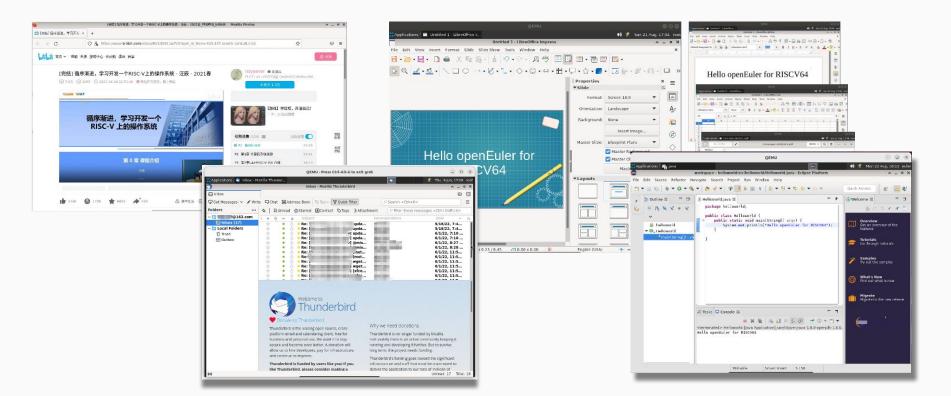
https://github.com/openjdk/jdk/commit/5905b02c0e2643ae8d097562f181953f6c88fc89

17u/11u/8u backport staging repos are ready:

- <u>https://github.com/openjdk/riscv-port-jdk17u</u>
- https://github.com/openjdk/riscv-port-jdk11u
- https://github.com/openjdk/riscv-port-jdk8u

Seeded with jdk{17, 11, 8}u-dev repos respectively.

Thursday, May 5th, 2022 | Spring 2022 RISC-V Week


In 2022, (almost) all the popular Linux distros support RISC-V. Linux Desktop is almost there.

Distros	Ubuntu	openKylin	Deepin	openEuler	OpenCloudOS		OpenWR ⁻	T OpenBSD	RT-Thread	Yocto
	Debian	Fedora	Gentoo	Arch Linux	FreeBSD	oper	nAnolis	ChromiumOS	FreeRTOS	Buildroot

Lang &	C/C++/Fortran/Rust	Java	JavaScript	Go / WASM	Dart	C# / .NET
Runtime	GNU GCC, Clang/LLVM	OpenJDK	V8, NodeJS, Spidermonkey	Upstreamed	Upstreamed	N/A

Very Good Support
Good Support
Basic Support
N/A

Web Browsers (Chromium and Firefox), Mail Clients, Eclipse, LibreOffice, MultiMedia Player, etc.

Now we need to get ready for the next 1 million RISC-V software developers

Application Developers & Middleware Developers

Dev Apps on RISC-V

(≥94m worldwide/github[1]) (≥8m in mainland China[2])

Compiler Engineers & System Developers

Porting to RISC-V (10k~100k)

<u>https://octoverse.github.com/</u>
 <u>https://zhuanlan.zhihu.com/p/637787110</u>

Why RuyiSDK: The Motivation

The initial idea (and pain) behind RuyiSDK

- The RISC-V instruction set is modular. This is good.
- However, if the user wants to try different combinations,
- So how much does it cost?
- Plus vendor-defined extensions?

Back to 2020, PLCT Lab was working on implementing a few ISA extensions like K, B, and V, etc. We thought it wouldn't be that hard in the beginning...

Source: PLCT OpenDay 2021, co-located with The 1st RISC-V Summit China

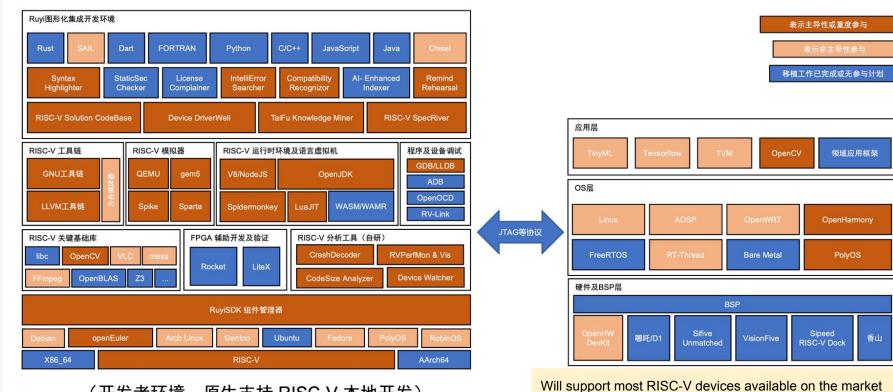
当前状态:QEMU 有了公开的分支正在努力;GCC 也正在努力中

Current status: QEMU has a public fork and is working on it; GCC is also working on it

The initial idea (and pain) behind RuyiSDK

- You need to compile the toolchain yourself, and maybe the Kernel, uboot, openSBI, etc.
- Vendors may have closed-source binary toolchains which provides some feature that open source solutions lacked.
 - and "vendor-specific" bugs and crashes
 - There are subtle differences in command-line arguments between different tools, and even between different versions of the same tool.
- Need to distinguish between native compilation and cross-compilation.
- Many downstream or out-of-tree patches.
 - Beware of versions of different system tools and libs!

Bogdan Botezatu @bbotezatu


Follow

Happy 26th birthday, **#Linux**! Here's your f-ing **#cake**, go ahead and compile it yourself.

- For non-system developers, it simplifies falling into as many implementation details as possible, and at the same time allows developers to see the principles and processes behind it.
- Provide the same development process, so that users can easily switch between different open source tools and vendor-customized toolchains.
- Simplify the environment construction of cross-compilation and native compilation.
- Provides a set of templates that can start with an existing example

RuyiSDK architecture and components

(开发者环境,原生支持 RISC-V 本地开发) ◎ ∠ ♀ ⊠ ■ ● ●

GCC support for RUYISDK

Porting RISC-V extensions on multi-version of GCC, tracking the latest feature and changes for every extension, adapting different Linux OS.

Extension supports: Bitmanip(1.0), Scalar crypto(1.0), Packed SIMD(0.96), Vector(0.7.1 & 1.0) Zfinx(1.0), Zicbo(1.0), Zmmul(1.0), Zc*(1.0), Zfh(1.0), Zfbf(0.1), Profiles(0.9)

GCC repo: <u>https://github.com/ruyisdk/riscv-gcc</u> Binutils repo: <u>https://github.com/ruyisdk/riscv-binutils</u>

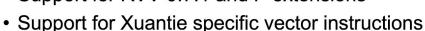
Developers:

Jiawei-Chen Shihua-Liao Yulong-Shi Yixuan-Chen jiawei@iscas.ac.cn shihua@iscas.ac.cn shiyulong@iscas.ac.cn chenyixuan@iscas.ac.cn

(B) RUVISDK

RuyiSDK architecture and components

Ruyisdk llvm-project


- Upstream https://github.com/llvm/llvm-project
 - RISCV Target
 - Standard extension support for Z*inx, Zc*, Zmmul, scalar cryptography, Zihintpause, Zbpbo
 - Backend Optimization
 - Middle-end Optimization, InstCombine,SCCP,LoopIdiom,LVI
 - Flang
 - LLDB, Ildb-server, RV{32,64}I, A M, C, RV32F , RV64F, D extensions
- CI monitors Ilvm-project for RISCV regressions every two hours https://Int.rvperf.org/

-Downstream https://github.com/ruvisdk/llvm-project +RVV0.7.1 -Backend Optimization -Contributors -LiaoChunyu chunyu@iscas.ac.cn -LiaoChunyu chunyu@iscas.ac.cn -Uxufan luxufan@iscas.ac.cn -Shao-Ce SUN sunshaoce@iscas.ac.cn -Qihan Cai qcai8733@uni.sydney.edu.au -Yingwei Zheng dtcxzyw2333@gmail.com -welonedo funanzeng@gmail.com -vincentWu vincenttttwu@gmail.com -timmer yjhdandan@163.com

RUYI QEMU

- Works
 - Port support for Xuantie CPUs
 - Support for RVV 0.7.1 and P extensions

- Support BF16 format for float point related intructions
- Initial support for Lichee Pi RV and Lichee Pi 4A machines

T-HEAD

- Links: https://github.com/plctlab/plct-qemu/tree/ruyi-qemu
- Main Contributor: Weiwei Li liweiwei@iscas.ac.cn>

RuyiSDK architecture and components

(WIP) ruyi-ng: Next Gen Distro/DevEnv Manager

RISC-V distro current status

- Tons of rootfs (rv64gc, rv64gcv, rv64gcv0p7, etc)
- Tons of repositories, rolling (Arch, Fedora, RevyOS, etc)
- People use a distro for reasons
 - Not for flame war!
 - Seems alike, but tons of difference when actual dev
 - Not try to eliminate them, include them!
- Dev env essentials
 - Anyone can reproduce
 - Minimal setup steps
 - One-click to distribute
 - RISC-V on x86: binfmt trick

- Reproducible: Nix mimic, but only server side
 - Base Images from known groundtruth
 - Hash-locked Software Repo^a
- Handy CLI: Mix of conda and docker semantics^b
 - ruyi-ng checkout archrv-monthly archrv-with-todays-rust
 - ruyi-ng activate archrv-with-todays-rust
 - Install rust nightly, no back-and-forth Dockerfile
 - ruyi-ng commit
 - ruyi-ng publish

^aWIP: https://github.com/NickCao/nap ^bWIP: https://github.com/NickCao/ruyi-ng

RuyiSDK architecture and components

(WIP) ruyi-ng Demo: Dev on two distro

zenithal@Aldebaran

Kernel: 6.1.11 Uptime: 21 mins

CPU: (64)

OS: Arch Linux riscv64

Packages: 119 (pacman)

Shell: bash 5.1.16

Terminal: /dev/pts/1

Memory: 267MiB / 64166MiB

[root@Aldebaran ~]# gcc -v Using built-in specs. COLLECT_GCC=gcc Target: riscv64-unknown-linux-gnu [zenithal@Aldebaran ruyi-ng]\$ ruyi-ng activate revyos-xthead-gcc10 [root@Aldebaran ~]# gcc -v |& grep -o 'with-arch=\w*' with-arch=rv64imafdcv0p7_zfh_xtheadc [root@Aldebaran ~]# cat /etc/os-release PRETTY_NAME="Debian GNU/Linux 12 (bookworm)" NAME="Debian GNU/Linux" VERSION_ID="12" VERSION_ID="12" VERSION="12 (bookworm)" VERSION="12 (bookworm)" VERSION_CODENAME=bookworm ID=debian HOME_URL="https://www.debian.org/" SUPPORT_URL="https://www.debian.org/support" BUG_REPORT_URL="https://bugs.debian.org/"

Figure: RevyOS with T-Head GCC

Figure: Arch RISC-V with GCC

NickCao, Taoky, Zenithal

Beyond RuyiSDK

The Next "Big Project" ≥ 100 chip & OS companies | ≥ 200 app comanies | ≥18 field | ≤5 years

