
Evaluation of Softprocessor RISCV for Edge
Computing Applications

Guillermo Montesdeoca ID ∗, Víctor Asanza ID †, Rebeca Estrada ID ∗ Cristian Ramírez ID ‡ Jonathan Cagua ∗

∗Escuela Superior Politécnica del Litoral, Espol (FIEC & CTI)
Guayaquil, Ecuador

{guianmon,restrada,jcagua}@espol.edu.ec
†SDAS Research Group, Ben Guerir 43150, Morocco

victor.asanza@sdas-group.com
‡SDAS Research Universitat Politècnica de València, Valencia, Spain

crirabe@posgrado.upv.es

Abstract—In this paper, a performance evaluation between
RISCV and other processors is conducted by estimating the
runtime of the Fibonacci sequence algorithm while systematically
increasing the number of iterations. To ensure a fair comparison,
RISCV is implemented on an FPGA Zynq-7000 SoC from Xilinx,
using the same clock frequency as other processors to eliminate
potential overclocking effects. Numerical results demonstrate
that RISCV outperforms the ATMEGA328P AVR processor
while exhibiting remarkable power efficiency. In addition, it
requires fewer instructions than its counterparts for Fibonacci
algorithms, Matrix Multiplication and RGB to HLB Conversion.
These results position RISCV as an attractive option for Edge
applications where energy conservation is essential, highlighting
its superior performance in both energy efficiency and instruction
efficiency.

Index Terms—RISC-V; FPGA; SoC; Soft-Core Processor;
VHDL

I. INTRODUCTION

There is now a critical need to develop compact, cus-
tomized, energy-efficient processors with real-time processing
capabilities for multiple applications, from ubiquitous smart
mobile devices to intricate radar systems and embedded com-
puter systems in modern vehicles. These embedded systems
play a key role, combining necessary hardware components
such as microprocessors, memory modules and displays, tai-
lored to specific applications. Their increasing Their increasing
trend is beingdriven by the quest to optimize performance-to-
size ratios, a goal that is intensifying every year [1].

Contemporary electronics design principles focus on con-
solidating entire systems onto a single microchip, integrating
not just individual components but entire ecosystems, includ-
ing microprocessors, memories, input and output peripherals,
Analog-to-Digital Converters (ADCs) and specialized features
tailored to specific applications [2]. This paradigm shift allows
the creation of multifaceted systems in condensed forms that
improve efficiency and enable miniaturization.

These embedded systems incorporate specialized features,
from hardware accelerators for tasks such as artificial in-
telligence [3] and cryptography to specific interfaces [2].

Traditional microprocessors face challenges due to their fixed
specifications when etched in silicon, making adaptability
difficult in a rapidly evolving technology landscape. To address
this rigidity, System on a Chip (SoC) have emerged as dynamic
solutions, offering various configurations meticulously de-
signed to meet specialized requirements in different industries
and applications, reflecting a responsive approach to market
demands [4].

The softcore processor approach offers a significant advan-
tage through its higher level of abstraction, enabling quick and
efficient modifications to processor architecture and function-
ality. This method allows for the creation of tailored Systems
on a Chip (SoC) systems, precisely matched to specific appli-
cation needs. Notable examples like Xilinx’s MicroBlaze [5]
and ARM Cortex-M1 demonstrate the approach’s versatility
[6], as they can be configured within dedicated development
environments, allowing designers to customize hardware at-
tributes. These processors can then be seamlessly integrated
into Field-Programmable Gate Arrays (FPGAs), resulting in
highly adaptable solutions. What sets this approach apart is
its transformative impact on Intellectual Property (IP) block
configuration, granting designers the ability to dynamically
shape hardware-level characteristics of chips. This newfound
flexibility revolutionizes processor fine-tuning, allowing for
specific adjustments in performance, power, or features.

Softcore processors, configured at the Hardware Description
Language (HDL) level, offer improved versatility and adapt-
ability, allowing designers to tailor them to specific application
requirements, making them ideal for scenarios requiring rapid
prototyping or frequent iterations. These processors operate
based on a predefined set of instructions, covering vital
functions such as memory operations and arithmetic. Often,
designers use commercially available Intellectual Property (IP)
blocks from companies such as ARM as fundamental building
blocks, providing a reliable starting point for development.
However, it is crucial to consider the potential royalty pay-
ments associated with the use of proprietary IP cores.

Nevertheless, the advent of RISC-V signals a departure from

https://orcid.org/0000-0002-5532-9132
https://orcid.org/0000-0002-2786-4162
https://orcid.org/0000-0003-3957-9294
https://orcid.org/0000-0002-7047-950X


this model, representing a free and open Industrial Standard
Architecture (ISA) with no royalties or non-disclosure agree-
ments. The transparency of RISC-V democratizes processor
design, enabling a broader community of developers and
companies to innovate collaboratively. This open access fosters
innovation and accelerates advances in processor technology,
removing financial barriers and cultivating a dynamic environ-
ment for progress and collaboration.

RISC-V International is a non-profit organization that over-
sees and promotes the RISC-V open instruction set architec-
ture1. This organization is responsible of the development,
promotion and ongoing standardization of the RISC-V archi-
tecture.

The performance offered by these processors is intrinsically
related to the complexities of the systems in which they
are embedded, whether it is the low-power design of the
ARM Cortex-M0+ (Raspberry Pi Pico) or the role of the
ARM Cortex-A9 (Zynq-7000) within sophisticated mobile
devices. Therefore, the comparative analysis presented in [7]
aims to unravel the subtle strengths and weaknesses of these
processors within their specific contexts, shedding light on
their performance, energy efficiency and adaptability.

Since we have introduced a design of the first Ecuadorian
open-source software softprocessor called RISCV-EC in a
prior work [8], this paper aims to evaluate our proposed RISC-
V by a comprehensive comparison with other established
processors such as the 8-bit AVR microcontroller (Microchip
ATmega 328p), ARM Cortex-M0+ (Raspberry Pi Pico) and
ARM Cortex-A9 (Zynq-7000). These processors, each with
diverse capabilities and design philosophies, provide a robust
framework for exploration. The comparison is carried out us-
ing three algorithms, namely Fibonacci, Matrix Multiplication
and RGB to HLB Conversion algorithms.

II. RELATED WORK

In the field of processor design and implementation, a
large body of academic work has been focused on analyzing
the differences between hard processors and soft processors,
by establishing the differences and trade-offs that define the
landscape of processor architectures, drawing insights from
various fields of computer science and engineering. For in-
stance, [9, 10] present a glimpse into this extensive body
of work, highlighting the adaptability of soft processors and
acknowledging the efficient performance of hard processors.

Several studies in the field of microprocessor selection
have addressed the task of choosing the most suitable mi-
croprocessor based on specific requirements and processor
characteristics. Within this area of research, academics have
devised methodologies and frameworks to guide decision mak-
ing process. For example, [1] provides valuable insights into
the microprocessor selection process, especially in aligning
the technical requirements of the project with appropriate
microprocessor attributes.

1https://riscv.org)

Researchers have embraced the use of FPGAs as a versatile
platform for implementing digital systems, moving away from
the limitations of traditional microprocessors. This paradigm
shift introduces a wealth of possibilities, including the creation
of custom architectures tailored to specific applications. Key
advantages of this FPGA-centric approach include the ability
to design custom hardware accelerators for optimized com-
putational performance, leverage parallel processing for tasks
requiring real-time data handling and complex computations
such as vector processors [11]. Other work has focused on
exercising detailed control over low-level hardware design, ac-
celerating rapid prototyping and iterative development, achiev-
ing energy efficiency in power-sensitive applications, real-time
processing, low latency and high throughput are paramount,
as explained in references [12] and [13].

Selecting a suitable processor goes beyond raw computa-
tional power, considering factors such as energy efficiency,
memory capacity, input/output interfaces, scalability, security
features and long-term support. Academics such as Jim Ledin
and Dave Farley delve into the intricacies of designing Soft-
Core Processors, detailed in reference [14], offering a com-
prehensive guide to their design. Their work explores the
complexities of processors, the differences in instruction set
architectures (including RISC-V), and the operating principles
of devices such as smartphones that rely on ARM-based
processors.

Other studies focused on the comparison between hard pro-
cessors and soft-core processors, remarking their advantages,
tradeoffs, and practical implications on performance such as
[2], where the authors evaluate the performance of a digital
control application on an FPGA using both hard and soft-
core processors, providing valuable insights into the real-world
implications of choosing between these approaches. In addi-
tion, the reference [4] performs a comprehensive comparative
analysis of Intellectual Properties (IPs) of commercially avail-
able processors, including the influential Xilinx Microblaze,
serving in decision making when selecting processor IPs for
specific projects or applications.

In particular, [15] presents a comprehensive evaluation of
a commercial RISC-V core, assessing processor reliability
and error resilience in practical applications. Their research
analyzed errors, measuring their frequencies during funda-
mental operations both with and without an operating system.
This research has significant relevance, where processors are
fundamental to applications ranging from critical systems to
consumer electronic devices, contributing to the broader debate
on processor quality, performance and robustness.

Gray Research LLC introduced an innovative approach
focused on designing a RISC-V core with optimal component
efficiency, aiming to maximize the number of cores accom-
modated within a FPGA framework [16]. This strategy aimed
to harness parallelism’s power by densely populating FPGAs
with numerous cores, enhancing computational throughput
and system performance, especially in applications with real-
time data processing and high-performance computing require-
ments. This initiative reflects a broader trend in leveraging



FPGA technology for diverse applications, highlighting RISC-
V’s adaptability and potential to address hardware design
challenges and unlock the full potential of FPGA-based par-
allelism.

In our prior work [8], we proposed a design of the first
Ecuadorian open-source software softprocessor called RISCV-
EC, which is based on a RISC-V single core architecture and
compared to other processors such as AVR ATMEGA328P,
ARM Cortex M1 and ARM Cortex A9 Zynq-7000 . The
results showed that the RISCV-EC softprocessor has a better
performance than the ATMEGA328P AVR processor for any
given number of iterations.

LowRISC2 is a non-profit organization considered a key
player in collaborative efforts aimed at accelerating RISC-
V technology, forging partnerships with universities, research
centers and industry giants such as Google. Among its con-
tributions to the RISC-V ecosystem is the development of a
RISC-V soft core known as IBEX [17].

III. MICROARCHITECTURE

Here we present the architecture of the proposed RISC-
V softprocessor, emphasizing the Medium Scale Integration
(MSI) blocks that constitute its core. Each part of a mi-
crocontroller is detailed, encompassing design considerations
and practical implementation within a Xilinx FPGA environ-
ment.This comprehensive narrative aims to provide readers
with an in-depth comprehension of the softprocessor’s inner
workings, from architectural components to real-world im-
plementation, facilitating a holistic grasp of its design and
practical deployment.

A. Softprocessor Design

The architectural implementation was carried out using
VHDL and is visually represented in Figure 1. All the source
code for individual blocks and the complete architecture has
been made publicly available on the OpenCores platform 3.
OpenCores stands as a preeminent online community dedi-
cated to the development of gateway Intellectual Properties (IP
Cores). The RISCV softprocessor aligns with the architectural
principles of a RISC-V processor, as meticulously delineated
in ISO documentation.
• Arithmetic Logic Unit (ALU): This integral compo-

nent assumes the pivotal role of executing arithmetic
operations on integers and facilitating comparisons. Its
operation is governed by two 32-bit inputs, one featur-
ing a 4-bit Operation Code (Opcode) designated as a
communication flag for interactions between the control
unit and the ALU (refer to Table I). Furthermore, the
ALU generates a 32-bit output to convey the computed
results. Notably, in this context, there’s no need for a carry
mechanism, as the numbers are subjected to addition as
signed integers, ensuring that the sums remain within the
confines of the 32-bit range. In VHDL, a case statement

2https://lowrisc.org
3https://github.com/RISCV-EC/RISCV-EC

TABLE I: Instructions that can be executed by the instruction
set processor RISCV

Operations Operations Flow Memory
between with clontrol operations
registers immediate operations

add addi beq lb
sub slti bne lh
sll sltiu blt lw
slt xori bge lb
sltu ori bltu lhu
xor andi bgeu sb
srl sli sh
sra srli sw
and sli sh

is employed to dynamically switch between operations
based on the Opcode, allowing the ALU to adapt its
functionality accordingly.

• Register Bank: The register bank serves as a 32-bit by
32-bit memory unit, exhibiting a multifaceted functional-
ity. It encompasses three distinct 5-bit read inputs, a 32-
bit data input, a pivotal Write/Read enable signal (WE)
that dictates data transfer, a clock input to synchronize op-
erations, and two 32-bit outputs. The memory’s operation
is noteworthy for its asynchronous reading, meaning it re-
sponds swiftly to read requests, while writing operations
are synchronous, ensuring data integrity and coherence.
This synchronization is achieved through the inference
of the memory block’s behavior, allowing the synthesis
tool to seamlessly orchestrate the required operations. In
essence, the register bank primarily comprises flip-flops,
underpinning its efficient and reliable performance.

• Instruction Memory: The register bank functions as a
versatile memory unit with a size of 32 bits by 32 bits.
It includes three separate 5-bit read inputs, a 32-bit data
input, a crucial Write/Read enable signal (WE) control-
ling data transfer, a clock input for synchronization, and
two 32-bit outputs. The memory operates asynchronously
during reads, promptly responding to requests, and syn-
chronously during writes, guaranteeing data integrity and
coherence. This synchronization is achieved through the
inference of the memory block’s behavior, allowing the
synthesis tool to seamlessly orchestrate the required oper-
ations. In essence, the register bank primarily comprises
flip-flops, underpinning its efficient and reliable perfor-
mance.

• Program Counter (PC): This integral MSI block func-
tions as a register responsible for storing the current
program line’s value, denoting the instruction being ex-
ecuted by the processor. Its operation is synchronized
with the clock signal, incrementing by 4 during each
clock cycle. This incrementation is achieved through
a well-coordinated interplay between an adder and a
multiplexer, ensuring precise program flow control and
efficient execution of instructions.

• Instruction Decoder: Within this critical section, the 32-

https://github.com/RISCV-EC/RISCV-EC


Fig. 1: Proposed architecture

bit instruction is dissected into distinct sets that hold
essential relevance for the processor’s operation. The
division adheres to the format established by R-type
instructions. Specifically, the first 7 bits are dedicated to
Func7, followed by designated bits for rs1 and rs2, each
assigned their respective bit fields. An allocation of 3
bits is made for Func3, while RD claims 5 bits for its
designation. Lastly, the opcode is allocated 7 bits. This
systematic segmentation, depicted in Figure ??, facili-
tates the precise extraction of crucial information from
the instruction, streamlining the processor’s execution of
diverse commands.

Fig. 2: Instruction Format

• Multiplexors: The Multiplexer, a fundamental MSI
block, adeptly alters its outputs by strategically selecting
from among its inputs. In the context of our architecture,
a total of four multiplexers collaboratively contribute to
the system’s operation. The selection of inputs for each
of these multiplexers is meticulously governed by the
control unit, which generates and dispatches the requisite
control signals. This orchestrated utilization of multiplex-
ers plays a pivotal role in facilitating dynamic data routing

and decision-making within the processor’s operations,
enhancing its overall efficiency and adaptability.

• Sign extender: Within our MSI architecture, the Sign
Extender assumes a crucial role, particularly in processing
immediate instructions characterized by a 12-bit integer
value encoded within the instruction. To seamlessly inte-
grate this value with the ALU, which operates on 32-bit
inputs, the 12 bits must undergo an extension to match the
ALU’s data width. Remarkably, this extension is executed
without any alteration to the magnitude or sign of the
original value, ensuring that precision and consistency
are upheld throughout the computational processes.

• Control Unit: The pivotal Control Unit, a critical MSI
block within our architecture, operates as a Moore Finite
State Machine (FSM) responsible for the generation of
intricate control signals, thereby orchestrating the execu-
tion of instructions by the processor. It takes as input
the opcode, func3, and func7 fields from the RISC-V
instruction format, specifically for R-type instructions.
Through a systematic evaluation facilitated by a case
statement, the Control Unit categorizes instructions into
their respective types, including R, I, S, B, U, or J.
Following this classification, an additional nested case
statement is employed to pinpoint the specific instruction,
leveraging the func3 field. In instances where Opcode
and func3 overlap, such as in addition and subtraction
instructions, an if-else or when-else statement effectively
resolves the selection between the two, ensuring precise
instruction execution within the processor’s operations.
This comprehensive control mechanism is instrumental in
maintaining order and accuracy throughout the execution
of diverse instructions.



B. Instructions Type

The instructions in our architecture are categorized into five
distinct types: Type-R, Type-I, Type-S, Type-B, and Type-J.
These types correspond to Record, Immediate, Save, Branch,
and Jump instructions, each featuring its unique format.
The RISCV Softprocessor possesses the inherent capability
to differentiate between these instruction types and execute
them sequentially. In the ensuing sections, we elucidate the
inner workings of each instruction type within the processor,
commencing with R-type instructions. This classification and
differentiation of instruction types play a fundamental role
in facilitating the orderly execution of a diverse range of
commands within the processor’s operations.

• Type R Instructions: In the RISCV Softprocessor archi-
tecture, as depicted in Fig. 1, the processing of Type R
instructions initiates with the instructions being fetched
from the instruction memory and subsequently routed
to a single instruction decoder. Within this decoder,
the opcode, func7, and func3 fields are extracted and
dispatched to the control unit. This control unit plays
a pivotal role in generating activation signals that or-
chestrate the behavior of various elements, including the
ALU, contingent on the instruction type, as delineated
in Table 1. Notably, INMMUX serves as the signal
governing the multiplexer responsible for selecting the
relevant field for immediate generation. In the context
of Type R instructions, this signal effectively becomes a
"don’t care" since immediates are not employed in these
instructions.
The REG−WE signal assumes a value of 1, signifying
that the output of the ALU must be stored within a
register. Conversely, both PC−MUX and MEN−WE
remain at 0 since Type R instructions do not pertain
to memory operations or branch instructions. Finally,
ALU −MUX and MEN2REG−MUX are set to 1,
indicating the necessity to select the appropriate portion
of the register bank for ALU operations, with the output
of the ALU being directed to the din port of the register
bank. This comprehensive configuration ensures precise
and coordinated execution of Type R instructions within
the processor’s operations.

• Type I Instructions: In the context of Type I instructions,
the activation signals closely resemble those of the previ-
ous instruction type. The ALU receives the corresponding
opcode for the operation from the Control Unit (CU ).
Notably, REG−WE and MEN2REG−MUX both
assume a value of 1. The former signifies that the results
of the ALU operation should be written to the register
block, while the latter is responsible for directing the
ALU’s output to the data input of the register bank.
Conversely, the remaining control signals are set to 0. In
this specific instruction type, the bits spanning from 31 to
20 within the instruction are consolidated and extended
using the sign extender block, ultimately arriving at
one of the ALU ports. The resultant output from the

ALU operation is then stored within the register bank,
completing the execution of Type I instructions in a
coordinated and precise manner.

• Type S Instructions: In the case of Type S instruc-
tions, specific control signals come into play, namely
INM −MUX and MEM −WE, while the remainder
remain inactive. The process begins with the creation of
an immediate value by concatenating bits 31 to 25 and
11 to 7. This 11-bit immediate is then extended while
preserving its sign through the sign extender block.
Subsequently, this extended immediate value is added to
the contents of the register indicated by the address in
RS1. The result of this addition becomes the memory
address where the data will be stored. The data itself
is sourced from the RS2 register, but it is important to
note that it is not subjected to ALU operations because
the ALU − MUX signal remains deactivated in this
scenario. This streamlined execution path ensures the ef-
ficient handling of Type S instructions within the RISCV
softprocessor architecture.

• Type L Instructions: For Type L instructions, the
REG−WE signal is activated, while the other control
signals remain deactivated. In this context, the values
stored in RS1 are subjected to addition with an immediate
value within the ALU. The outcome of this operation
serves as the memory address from which data will be
read. This data is then directly transmitted to the Data
In (din) port of the register block, ready to be stored in
the address specified by RD. This straightforward process
ensures efficient execution of Type L instructions within
the RISCV softprocessor architecture.

• Type B Instructions: For Type B instructions, the op-
eration of the ALU depends on the specific instruction
being executed, as determined by the operations outlined
in Table 1. Additionally, the control signals PC−MUX
and ALU −MUX are set to 1, while the rest remain
at 0. The functioning of Type B instructions involves a
comparison between an immediate value and the content
of RS2. The outcome of this comparison serves as an
input to the Control Unit (CU), signaling the initiation
of a branch operation. Consequently, the CU activates
the PC −MUX , which in turn alters the input of an
adder responsible for modifying the program counter.
The degree of modification to the program counter is
decoded based on the values in the funct and rd fields
of the instruction. This decoding process is facilitated by
a specialized block that rearranges the bits, generating
the necessary immediate value for the branch instruc-
tion. This mechanism ensures the correct execution of
branching operations within the RISCV softprocessor
architecture.

The Register Bank plays a crucial role in the RISCV
softprocessor architecture, receiving signals from RS2, RS1,
and RD as specified in the instruction encoding. RS2 and
RS1 are directly connected to the read ports of the register



bank, and the data stored in those addresses are immediately
accessible through Do2 and Do1. Meanwhile, RD is directed
to the ad port, which serves as the write address. The Write
Enable (WE) signal coordinates with the clock to synchro-
nize the storage of data arriving through din. The register
bank’s outputs are then fed into the ALU, with do1 going
directly to port 2, and do1 connected to a multiplexer. This
multiplexer is responsible for allowing the selection between
using immediate values or performing operations between
registers, ensuring flexibility and adaptability in executing
various instructions within the processor.

IV. NUMERICAL RESULTS

For the evaluation of the architectures, we used three
algorithms, which are available at the following link https:
//github.com/RISCV-EC/RISCV-EC/tree/main/Algorithms.
The description of each of the three algorithms is is presented
below.

Fibonacci Series: The program calculates and stores the
Fibonacci sequence in memory, starting from 1 and 2, until
the value reaches or exceeds 100. The code uses specific
registers and arithmetic and bit manipulation operations to
perform the necessary operations. The program begins by
initializing a series of registers and setting the stack pointer
before entering a loop where the Fibonacci sequence is
calculated and stored. Once the limit of 100 is reached, the
program finishes and restores the stack pointer to the original
state. The Fibonacci sequence is stored in the program
memory for later use. We employed Algorithm 1 to assess
and compare the performance of the various development
boards utilized in this study. Additionally, a significant
parameter under consideration was the utilization of logic
elements during the synthesis of the VHDL code on the FPGA.

Algorithm 1: Fibonacci series
Output: Array of integers fib of size 100 containing

the first 100 Fibonacci numbers

Data: Integers: fib[100], i

for i← 2 to 99 do
fib[i]← fib[i− 1] + fib[i− 2]

end
return fib

Matrix Multiplication: The program implements the
multiplication of two matrices. A function is defined
matrix_multiply, which takes two matrices stored in memory,
performs the necessary multiplication and accumulation
operations, stores the result in the first matrixand and uses
specific registers and arithmetic operations to manipulate
the data in the matrices. The main code main initializes the
matrices, calls the function matrix_multiply and stores the
result, restoring the state of the stack pointer before exiting.
The code also includes data sections that store the values of

the arrays and details about the size of the stack used by the
functions, thus showing their structure and functionality. We
employed Algorithm 2 to assess and compare the performance
of the various development boards utilized in this study.
Additionally, a significant parameter under consideration was
the utilization of logic elements during the synthesis of the
VHDL code on the FPGA.

Algorithm 2: Matrix Multiplication
Input: Matrix A and B
Output: Matrix result
for i← 0 to 2 do

for j ← 0 to 2 do
result[i][j]← 0
for k ← 0 to 2 do

result[i][j]← result[i][j]+A[i][k]×B[k][j]
end

end
end
return result

RGB to HLB Converter: The program performs the
conversion of a color from Red Green and Blue (RGB)
format to Hue Saturation Lightness (HSL). It utilizes two
structures, RGBColor and HSLColor, to represent colors in
RGB and HSL formats, respectively. The RGBtoHSL function
takes a color in RGB format and calculates its corresponding
values in HSL format. It performs the necessary mathematical
calculations to determine the hue, saturation, and lightness
of the provided color. In the main program (main), a pure
red color (255 in red, 0 in green, and blue) is created,
converted to HSL format using the RGBtoHSL function, and
the resulting values are stored in an HSLColor structure.
This code demonstrates a basic example of color conversion,
which can be useful in graphical applications and image
processing. We employed Algorithm 3 to assess and compare
the performance of the various development boards utilized
in this study. Additionally, a significant parameter under
consideration was the utilization of logic elements during the
synthesis of the VHDL code on the FPGA.

A. Features of the RISCV processor

The main features of the RISCV processor are listed below:
• RISC-V Architecture: The processor aligns with RISC-

V architectural principles, following a Reduced Instruc-
tion Set Computing approach for efficient instruction
execution.

• 32 Registers: The processor includes a set of 32 registers,
with the initial register (X0) always set to zero due to its
physical grounding connection.

• Arithmetic Logic Unit (ALU): The ALU performs arith-
metic operations on integers and facilitates comparisons.
It operates on two 32-bit inputs using a 4-bit Operation

https://github.com/RISCV-EC/RISCV-EC/tree/main/Algorithms
https://github.com/RISCV-EC/RISCV-EC/tree/main/Algorithms


Algorithm 3: RGB to HLB Converter
Input: Color RGB: rgb = (r, g, b)
Output: Color HSL: hsl = (h, s, l)
[0, 1]← Normalize(r, g, b)
M ← max(r, g, b)
m← min(r, g, b)
l← (M + m)/2

if M = m then
s← 0
h← 0 // Undefined, but set to 0

else
d←M −m
if l > 0.5 then

s← d/(2−M −m)
else

s← d/(M + m)
end
if M = r then

h← (g − b)/d + (g < b?6 : 0)
else

if M = g then
h← (b− r)/d + 2

else
h← (r − g)/d + 4

end
end
h← h/6

end
return hsl = (h, s, l)

Code (Opcode) and produces a 32-bit output. The ALU
handles addition of signed integers within the 32-bit range
without a carry mechanism.

• Register Bank: This 32-bit by 32-bit memory unit in-
cludes read inputs, a data input, Write/Read enable signal
(WE), and clock input. It supports asynchronous reading
and synchronous writing, ensuring data integrity. Flip-
flops are utilized for efficient performance.

• Instruction Memory: Similar to the register bank, this
32-bit by 32-bit memory unit supports asynchronous
reading and synchronous writing. It plays a crucial role
in storing instructions for the processor to execute.

• Program Counter (PC): This integral component stores
the current program line’s value, indicating the instruction
being executed. It increments by 4 during each clock
cycle, ensuring precise program flow control.

• Instruction Decoder: The 32-bit instruction is dissected
into distinct sets, following the format of R-type in-
structions. It involves decoding Func7, rs1, rs2, Func3,
RD, and opcode fields to extract essential information,
streamlining diverse command execution.

• Multiplexers: Four multiplexers facilitate dynamic data
routing and decision-making within the processor’s op-
erations. Inputs are selected based on control signals
generated by the Control Unit, enhancing efficiency and
adaptability.

• Sign Extender: This component extends 12-bit integer
values from immediate instructions to match the ALU’s
32-bit data width. It ensures precision and consistency in
computational processes.

• Control Unit: Operating as a Moore Finite State Ma-
chine (FSM), the Control Unit generates intricate control

TABLE II: FPGA resources Usage for synthesizing

Resources FPGA capacity Usage
Slice LUTs 53200 3.69%

Slice Registers 106400 2.36%
F7 Muxes 26600 0.77%
F8 Muxes 13300 0.24%

Slice 13300 7.03%
LUT as Logic 53200 3.20%

LUT as Memory 17400 1.48%
Block RAM Tile 140 1.07%

Bonded IOB 125 0.80%
BUFGCTRL 32 9.38%
BSCANE2 4 25.00%

signals based on opcode, func3, and func7 fields. It
categorizes instructions into types (R, I, S, B, U) and
further refines instruction selection using nested case
statements and conditional statements, ensuring accurate
instruction execution.

B. Resource Usage

The use of programmable logic elements within the FPGA
following the synthesis of the RISCV design, as outlined
in Table II, demonstrates significant improvement. These
findings indicate that the consumption of Logic Elements (LE)
is notably minimal. Consequently, the envisioned processor
can be readily employed in alternative FPGAs with more
modest logic element resources available.

C. Power consumption

Finally, we present a comparison of processor power con-
sumption while running the Fibonacci Series algorithm. For
this comparison, each processor worked with its respective
clock frequency. The clock frequencies per processor are as
follows:

• RISCV operates at 50MHz.
• 8-bit AVR Microcontroller (Microchip ATmega 328p)

runs at 16MHz.
• ARM Cortex-M0+ (Raspberry Pi Pico) operates at

125MHz.
• ARM Cortex-A9 (Zynq-7000) runs at 650MHz.

Figure 3 shows the results of static, dynamic and total power
consumption. These values were obtained experimentally for
each of the processors on their respective development boards:
RISCV on the Zynq-7000, the 8bit AVR Microcontroller
(Microchip ATmega 328p) on the Arduino UNO, the ARM
Cortex-M0+ on the Raspberry Pi Pico and ARM Cortex-A9
on the Zynq-7000. The definition of each of these consumption
metrics is as follows:

• Static Power: It is the power consumption in Watts (W)
by the development board with the processor in IDLE
mode and it was easured experimentally,.

• Dynamic Power: It is the power in Watts (W) solely from
the processor executing the Fibonacci Series algorithm
[18]. It was calculated by subtracting static power from
total power.



Fig. 3: Power consumption Comparison

Fig. 4: Running Time Comparison among RISCV, ARM Cortex-
M0+ (Raspberry Pi Pico) and ARM Cortex-A9 (Zynq-7000)
processors

Numerical results demonstrates that the proposed RISCV
processor consumes 2mW when executing the Fibonacci Se-
ries algorithm while the single-core ARM Cortex-M0+ pro-
cessor (Raspberry Pi Pico) consumes 14.22uW, and the 8-
bit AVR Microcontroller (Microchip ATmega 328p) consumes
0.296mW. In particular, ARM Cortex-A9 processor (Zynq-
7000) uses 62.4mW due to its higher performance capabil-
ities and dual-core configuration integrated with 28nm Artix
technology.

D. Performance Comparison

In Section IV, the performance evaluation of each processor
was conducted using Algorithm 1, considering their respective
implementations and disparities in the instruction set. Figure
4 illustrates a comparative analysis among the proposed pro-
cessor, the ARM Cortex-M0+ (Raspberry Pi Pico), and the
ARM Cortex-A9 (Zynq-7000) processor, shedding light on
their relative performance characteristics.

All processors were programmed in assembly language,
utilizing registers for mathematical operations rather than
memory. The observed performance order, from slowest to

fastest, was as follows: RISCV, ARM Cortex-M0+ (Raspberry
Pi Pico), and ARM Cortex-A9 (Zynq-7000). This performance
discrepancy can be attributed to the distinct clock frequen-
cies of these processors (specifically, RISCV, ARM Cortex-
M0+, and ARM Cortex-A9 operate at 50MHz, 125MHz,
and 650MHz, respectively). The absence of a pipeline in
the RISCV hampers its maximum achievable frequency. The
Raspberry Pi Pico, powered by the ARM Cortex-M0+ core, is
designed for efficiency and employs a short 2-stage pipeline,
resulting in a lower maximum clock frequency. In contrast, the
PYNQ-Z1’s SOC boasts two ARM Cortex-A9 cores, created
for a 45nm manufacturing process and featuring an 8-stage
pipeline. While it holds the highest frequency among the
processors in this comparison, it remains relatively low by
contemporary standards. In summary, a higher clock frequency
correlates with increased performance, with pipeline stages
playing a pivotal role in boosting a processor’s frequency.
It’s essential to note that while this experiment allows us to
evaluate each processor’s implementation, it doesn’t provide a
comprehensive assessment of the differences in execution time
attributable to variations in instruction sets, primarily due to
the substantial differences in clock frequencies.

To facilitate a comparison between the proposed proces-
sor and one with a similar clock frequency, we employed
8bit AVR Microcontroller (Microchip ATmega 328p) on the
Arduino Uno development board, which operates at a lower
frequency of 16 MHz and features a 1-stage pipeline. The
outcomes of this comparative analysis are depicted in Fig. 5.
It’s noteworthy to acknowledge that there exists a disparity in
power consumption between these two processors; however,
it’s crucial to emphasize that this assessment provides only an
approximate estimate, precluding us from drawing concrete
conclusions in the realm of power consumption.

Fig. 5: Performance comparison RISCV (16MHz) vs 8bit
AVR Microcontroller - Microchip ATmega 328p (16MHz) with
lower clock frequency.

As anticipated, the RISCV exhibits significantly better per-
formance compared to the Arduino. This performance gap can
be attributed to several factors. Firstly, the RISCV’s instruction



set allows for more efficient code execution. Secondly, the
RISCV benefits from a 32-bit bus, which enables faster data
transfer and processing, whereas the Arduino operates with
an 8-bit bus, limiting its computational capabilities. These
architectural distinctions underscore the advantages of the
RISCV softprocessor in terms of speed and efficiency.

In Figure 6, we observe the outcomes of a comparative
analysis between the RISCV processor and the ARM Cortex-
M0+ processor found in the Raspberry Pi Pico. To ensure a
fair comparison, the operating frequency of the RISCV was
adjusted to match the 125MHz frequency of the ARM Cortex-
M0+. Notably, the RISCV outperforms the ARM Cortex-M0+
when the number of interactions exceeds 300. Conversely,
for interaction counts lower than 300, the ARM Cortex-
M0+ processor on the Raspberry Pi Pico exhibits superior
performance when compared to the 32-bit RISCV processor.
These findings underscore the nuanced performance dynamics
influenced by factors such as operating frequency and compu-
tational workload.

Fig. 6: Comparison RISCV vs ARM Cortex-M0+ (Raspberry
Pi Pico) with similar operating frequency (125MHz).

For a comprehensive and equitable comparison between
the processors, we conducted simulations that enabled us to
configure the RISCV with a higher operating frequency. This
simulation-based approach was necessary as the physical limi-
tations of the experimental RISCV processor precluded it from
achieving higher clock frequencies. Figure 7 illustrates the
comparative results between the RISCV and the ARM Cortex-
A9 (Zynq-7000), both operating at identical clock frequencies
(650MHz). Notably, even with matched clock frequencies, the
ARM Cortex-A9 in the Zynq 7000 outperforms the RISCV,
reaffirming the supremacy of the ARM Cortex-A9 in terms of
raw processing power. This analysis provides valuable insights
into the influence of architectural differences on processor
performance under similar operating conditions.

Another comparison is based on the number of instruc-
tions required by each processor to execute the algorithms:
Fibonacci Series, Matrix Multiplication and RGB to HLB
Converter, shown in Figure 8. In this comparison, we take
advantage of the architecture of each processor to implement

Fig. 7: Simulated Performance of RISCV vs ARM Cortex-A9
(Zynq-7000) with same clock frequency (650MHz).

in assembly language the proposed algorithms. That is to say,
those processors with a better architecture will need a lower
number of instructions to execute the same algorithm.

On the one hand, the results show that the ARM Cortex-A9
architecture (Zynq-7000) requires fewer instructions to execute
the three algorithms. On the other hand, the RISCV processor
is the second processor that requires fewer instructions to
execute the Fibonacci Series algorithm. When running the
Matrix Multiplication algorithm, the second best processor
is the ARM Cortex-M0+ (Raspberry Pi Pico). Finally, when
running the RGB to HLB Converter algorithm, the second
best processor requiring the least number of instructions is
the ARM Cortex-M0+ (Raspberry Pi Pico).

Comparing the RISCV processor, we can notice that it
is a robust device that when executing the Serial Fibonacci
algorithm, requires fewer instructions than the 8bit AVR
Microcontroller (Microchip ATmega 328p) and ARM Cortex-
M0+ (Raspberry Pi Pico) processors. Likewise, the RISCV
processor, when executing the Matrix Multiplication algo-
rithm, requires fewer instructions than the 8bit AVR Micro-
controller processor (Microchip ATmega 328p). Finally, the
proposed RISCV processor, when executing the RGB to HLB
Converter algorithm, requires less number of instructions than
the 8bit AVR Microcontroller (Microchip ATmega 328p). That
is, the proposed RISCV processor requires fewer instructions
when executing serial-based algorithms than the ARM Cortex-
M0+ and 8bit AVR Microcontroller processors. But when
executing algorithms requiring matrix operations it requires
fewer instructions than the 8bit AVR Microcontroller.

V. CONCLUSIONS

This paper evaluates a novel design of the first Ecuadorian
open-source softprocessor, based on the RISC-V single-core
architecture. In addition, we conducted a thorough perfor-
mance comparison with various well-known processors, such
as AVR ATMEGA328P microcontroller, ARM Cortex M0,



Fig. 8: Number of instructions per algorithms

and A9. For convenience, the RISCV softprocessor’s FPGA
configuration was adjusted to operate at flexible clock frequen-
cies of 16MHz, 125MHz, and 650MHz, which allows us to
have fair comparisons with other processors. Numerical results
shows that RISCV softprocessor consistently outperformed
the 8bit AVR Microcontroller processor across a range of
Fibonacci series iterations and also presented a better per-
formance than the ARM Cortex-M0+ processor after 300
iterations. In scenarios with less than 18 iterations, the RISCV
also outperformed the ARM Cortex-A9 processor. In addition,
RISCV processor shows remarkable energy efficiency by
consuming only 2mW during the execution of the Fibonacci
Series algorithm, which is higher to the energy consumed by
the single-core ARM Cortex-M0+ processor and the 8-bit AVR
microcontroller (i.e 14.22muW and 0.296mW respectively).
RISCV is an attractive option in applications where energy
conservation is essential, when compared the dual-core ARM
Cortex-A9 processor that consumed 62.4mW due to its higher
power.

Regarding the number of instructions, the RISCV processor
requires fewer instructions than the 8-bit AVR and ARM
Cortex-M0+ microcontrollers when executing the Fibonacci
Series algorithm. Moreover, when executing the Array Mul-
tiplication algorithm, the RISCV processor needs fewer in-
structions than the 8-bit AVR microcontroller. Finally, for the
RGB to HLB Conversion algorithm, the RISCV processor
requires fewer instructions than the 8-bit AVR microcontroller.
In summary, the proposed processor outperforms both the
ARM Cortex-M0+ and the 8-bit AVR microcontroller in serial-
based algorithms, while outperforming the 8-bit AVR micro-
controller in algorithms involving matrix operations. As future
work, we propose to explore other strategies to improve the
energy efficiency of the processor, such as the parallelization
of J-type instructions to reduce the number of instructions
required in matrix operations and conversion algorithms.

REFERENCES

[1] Jason G Tong, Ian DL Anderson, and Mohammed AS Khalid. Soft-core
processors for embedded systems. In 2006 International Conference on
Microelectronics, pages 170–173. IEEE, 2006.

[2] GSK Gayatri Devi and G Kumara Swamy. An overview of microcon-
troller unit: from proper selection to specific application. Journal of
Critical Reviews, 3(1):2016.

[3] Behzad Salami, Osman S. Unsal, and Adrian Cristal Kestelman. On the
resilience of rtl nn accelerators: Fault characterization and mitigation.
In 2018 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pages 322–329, 2018.

[4] Ahmed Karim Ben Salem, Slim Ben Othman, and Slim Ben Saoud. Hard
and soft-core implementation of embedded control application using
rtos. pages 1896–1901, 2008.

[5] Tian Zheng, Gang Cai, and Zhihong Huang. A soft risc-v processor ip
with high-performance and low-resource consumption for fpga. In 2022
IEEE International Symposium on Circuits and Systems (ISCAS), pages
2538–2541, 2022.

[6] Vx00ED;ctor Asanza, Rebeca Estrada, Jocelyn Miranda, Leiber Rivas,
and Danny Torres. Performance comparison of database server based on
soc fpga and arm processor. In 2021 IEEE Latin-American Conference
on Communications (LATINCOM), pages 1–6, 2021.

[7] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W
Stewart. The Zynq book: embedded processing with the ARM Cortex-A9
on the Xilinx Zynq-7000 all programmable SoC. Strathclyde Academic
Media, 2014.

[8] Guillermo Montesdeoca, Víctor Asanza, Rebeca Estrada, Irving Vale-
riano, and MA Muneeb. Softprocessor riscv-ec for edge computing
applications. In International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, pages 209–220. Springer,
2023.

[9] Vx00ED;ctor Asanza, Rebeca Estrada, Jocelyn Miranda, Leiber Rivas,
and Danny Torres. Performance comparison of database server based on
soc fpga and arm processor. In 2021 IEEE Latin-American Conference
on Communications (LATINCOM), pages 1–6, 2021.

[10] Shaodong Qin and Mladen Berekovic. A comparison of high-level
design tools for soc-fpga on disparity map calculation example. arXiv
preprint arXiv:1509.00036, 2015.

[11] Francesco Minervini, Oscar Palomar, Osman Unsal, Enrico Reggiani,
Josue Quiroga, Joan Marimon, Carlos Rojas, Roger Figueras, Abraham
Ruiz, Alberto Gonzalez, et al. Vitruvius+: an area-efficient risc-v decou-
pled vector coprocessor for high performance computing applications.
ACM Transactions on Architecture and Code Optimization, 20(2):1–25,
2023.

[12] Victor Asanza, Rebeca Estrada Pico, Danny Torres, Steven Santillan,
and Juan Cadena. Fpga based meteorological monitoring station. In
2021 IEEE Sensors Applications Symposium (SAS), pages 1–6, 2021.

[13] Guillermo Montesdeoca, Víctor Asanza, Kevin Chica, and Diego H.
Peluffo-Ordóñez. Analysis of sorting algorithms using a wsn and
environmental pollution data based on fpga. In 2022 International
Conference on Applied Electronics (AE), pages 1–4, 2022.

[14] Jim Ledin and Dave Farley. Modern Computer Architecture and
Organization: Learn x86, ARM, and RISC-V architectures and the design
of smartphones, PCs, and cloud servers. Packt Publishing Ltd, 2022.

[15] Imran Wali, Alfonso Sánchez-Macián, Alexis Ramos, and Juan Antonio
Maestro. Analyzing the impact of the operating system on the reliability
of a risc-v fpga implementation. In 2020 27th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pages 1–4.
IEEE, 2020.

[16] Jan Gray. Grvi phalanx: A massively parallel risc-v fpga accelerator
accelerator. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 17–
20. IEEE, 2016.

[17] Mathijs De Kremer, Marco Brohet, Subhadeep Banik, Roberto Avanzi,
and Francesco Regazzoni. Resource-constrained encryption: Extending
ibex with a qarma hardware accelerator. In 2023 IEEE 34th International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP), pages 147–155, 2023.

[18] Cristian Ramírez, Adrián Castelló, and Enrique S Quintana-Orti. A blis-
like matrix multiplication for machine learning in the risc-v isa-based
gap8 processor. The Journal of Supercomputing, 78(16):18051–18060,
2022.


	Introduction
	Related Work
	Microarchitecture
	Softprocessor Design
	Instructions Type

	Numerical Results
	Features of the RISCV processor
	Resource Usage
	Power consumption
	Performance Comparison

	Conclusions
	References

