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1. Background: Flood of Extensions
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Reproduce RISC-V extensions in modules on a hypervisor
Modules that correspond one-to-one with the desired RISC-V extensions into the proposed system.
This facilitates management in software and encourages adoption and collaboration with the existing ecosystem.

support the utilization of existing 
extensions

Acceleration of development cycle Enabling hypervisor modules tightly 
coupled to the specification

In RISC-V, modular specifications known as "extensions" are being formulated one after another.
However, the hardware implementation has not progressed as expected, leaving many 
extensions unused and in a state of limbo.
The main reasons why hardware implementations have not been progressed as desired are
1.Hardware implementation is costly.
2.Implementation of the corresponding software tool chain is essential.
3.It is difficult to predict customer demand in the strong business aspect.
The flood of such extensions is a great loss to the RISC-V community, and a major detriment to 
RISC-V's greatest identity as open source.

This study is still in the idea and basic implementation stages.
In addition to the ideas presented, we are also considering 
the following.

2. Target Extension: ”hardware-independent”

We first target at specialized hardware-independent 
extensions, many involve custom instructions and the addition 
of CSRs, Such as:
● Zicfiss: For security mechanism called Shadow Stack.
● Smmtt: For setting access permissions to OS-related 

memory areas.
● Ssdbltrp: For double trap.
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These extensions are hardware-independent and can be fully reproduced by the hypervisor.

Memory region

Users can easily introduce new extension 
environments to their hardware by 
installing modules.

1 The number of users will increase by making it 
easier to try extensions.

2
Software Developers can easily prepare a 
verification environment and expect feedback 
from more users.

3
Hardware vendors can examine user demand 
in the environment of a well-developed 
software toolchain.

3. Implementation: Trap and emulate

Emulation is achieved by trapping the newly introduced 
instructions, CSRs, exceptions, and memory areas on the 
hypervisor side.

e.g. Zicfiss (Shadow Stack)

4. Utilizing Sail: Convert to spec to the module

Illegal instruction
(exception)

Execute the process 
corresponding to 
the instruction on 

hypervisor side.
addi sp, sp, 60
sd s0, 64(sp)
sd ra, 52(sp)
addi sp, sp, -60
sspush zero, ra, zero
main: 

…
stack

Machine throws exception because it 
does not know this instruction.

sd a0, -56(s0)
addi a2, s0, -36
csrw menvcfg 0x4
… 
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To achieve tight coupling of the extension and hypervisor 
modules, we utilize Sail [1], a language for defining the 
instruction-set architecture (ISA) semantics of processors.

[1]: https://github.com/rems-project/sail
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The hypervisor allocates the memory 
area and protects it with a two-stage 
page address translation mechanism.

hardware-independent extensions It consists by adding these
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Easy to implement module behavior in hardware later

More easily make existing extensions available on system

Modules are written according to the specification format.

Assists in conversion from extensions to modules.

We plan to present detailed demonstration and experimental 
results at the next conference.
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● Increasing the number of 
supported extensions.

● Evaluation on real board.
● Measurement of execution 

speed overhead.
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