
5. Future Works: Impl, experiment, etc…

Norimasa TAKANA (takana@syssec.cs.tsukuba.ac.jp), Yoshihiro OYAMA
Graduate School of Science and Technology, University of Tsukuba

Development of a System for Easy Utilization of 
RISC-V Extensions Using Hypervisor Technology

RISC-V Day Tokyo 2024 Summer

1. Background: Flood of Extensions

6. Acknowledgement
This research is partially supported by Exploratory IT Human 
Resources Project (MITOU Program) of Information-technology 
Promotion Agency, Japan (IPA) in the fiscal year 2024.

Reproduce RISC-V extensions in modules on a hypervisor
Modules that correspond one-to-one with the desired RISC-V extensions into the proposed system.
This facilitates management in software and encourages adoption and collaboration with the existing ecosystem.

support the utilization of existing 
extensions

Acceleration of development cycle Enabling hypervisor modules tightly 
coupled to the specification

In RISC-V, modular specifications known as "extensions" are being formulated one after another.
However, the hardware implementation has not progressed as expected, leaving many 
extensions unused and in a state of limbo.
The main reasons why hardware implementations have not been progressed as desired are
1.Hardware implementation is costly.
2.Implementation of the corresponding software tool chain is essential.
3.It is difficult to predict customer demand in the strong business aspect.
The flood of such extensions is a great loss to the RISC-V community, and a major detriment to 
RISC-V's greatest identity as open source.

This study is still in the idea and basic implementation stages.
In addition to the ideas presented, we are also considering 
the following.

2. Target Extension: ”hardware-independent”

We first target at specialized hardware-independent 
extensions, many involve custom instructions and the addition 
of CSRs, Such as:
● Zicfiss: For security mechanism called Shadow Stack.
● Smmtt: For setting access permissions to OS-related 

memory areas.
● Ssdbltrp: For double trap.

Spec not yet ratified: 73

RISC-V Extension
(Specification)

Hypervisor Module
(Implementation)

Correspond 
one-to-one

User
If you want to introduce
this extension to hardware,

Install correspond module
to hypervisor

Formulator Software
developer

Hardware
VenderUser

Demand of board

Board supply

Hardware
supply

Specification

Feed back
Software
toolchain

It’s hard to turn the development cycle around 

Instruction CSRs Exception

These extensions are hardware-independent and can be fully reproduced by the hypervisor.

Memory region

Users can easily introduce new extension 
environments to their hardware by 
installing modules.

1 The number of users will increase by making it 
easier to try extensions.

2
Software Developers can easily prepare a 
verification environment and expect feedback 
from more users.

3
Hardware vendors can examine user demand 
in the environment of a well-developed 
software toolchain.

3. Implementation: Trap and emulate

Emulation is achieved by trapping the newly introduced 
instructions, CSRs, exceptions, and memory areas on the 
hypervisor side.

e.g. Zicfiss (Shadow Stack)

4. Utilizing Sail: Convert to spec to the module

Illegal instruction
(exception)

Execute the process 
corresponding to 
the instruction on 

hypervisor side.
addi sp, sp, 60
sd s0, 64(sp)
sd ra, 52(sp)
addi sp, sp, -60
sspush zero, ra, zero
main: 

…
stack

Machine throws exception because it 
does not know this instruction.

sd a0, -56(s0)
addi a2, s0, -36
csrw menvcfg 0x4
… 

stack

0x7f
SSE

henvcfg
menvcfg

0x0

…
memory

Read allocated memory region instead of CSRs

Illegal instruction
(exception)

Allocated section for
CSRs by hypervisor

Instruction CSRs

Exception Memory

…
SSE

henvcfg
menvcfg

memory

Memory region for 
Shadow Stack

Return address popped from 
stack

Return address popped from 
Shadow Stack

not match

Exception

To achieve tight coupling of the extension and hypervisor 
modules, we utilize Sail [1], a language for defining the 
instruction-set architecture (ISA) semantics of processors.

[1]: https://github.com/rems-project/sail

Describe
Sail

Hypervisor
module

Formulator
Specification

Coq

Newly implemented

Generate
Theorem proving

Documentation

Implementation
automation

Emulate exceptions 
behavior with a 

hypervisor

The hypervisor allocates the memory 
area and protects it with a two-stage 
page address translation mechanism.

hardware-independent extensions It consists by adding these

Existing Extension Hypervisor Module

Existing ExtensionHypervisor Module

Easy to implement module behavior in hardware later

More easily make existing extensions available on system

Modules are written according to the specification format.

Assists in conversion from extensions to modules.

We plan to present detailed demonstration and experimental 
results at the next conference.

Hardware (RISC-V GCH_Zifencei)

HypervisorExtension Module

Zicfilp Zicfiss V Zkne/Zknd

Guest OS
ApplicationApplication

FPGA

hardware-independent 
extensions

Specialized
Circuit

FPGAs perform the 
processing corresponding 
to the extension.

External Bus

● Increasing the number of 
supported extensions.

● Evaluation on real board.
● Measurement of execution 

speed overhead.

Exception

Others


