Linux Capable RISC-V SoC with OpenXC7 for Educational Purposes Yimin Gu^{1, 2}, Xu He², Xingyan Chen², Shicheng Zheng², and Jianliang Lu² 1. The University of Tokyo, 2. The University of Science and Technology of China

Contact: guyimin@mail.ustc.edu.cn

RISC-V softcores are already commodities, but... As a student, can you understand the code?

• Due to the complex design, written in another language (Chisel, SpinalHDL, etc), most capable cores are not suitable for beginners. Meanwhile, most smaller cores doesn't have the RV32IMA_Zicsr instructions/interrupts/peripheral interfaces.

 The author, as a student, spent two years writing a Linux capable core, Quasi SoC, in easy-to-read pure Verilog. A rich set of peripherals makes it run on nearly every board.

• 32-bit No-MMU Linux, a good medium-level challenge for students, is

Questions in Digital Circuits and **Computer Organization and Design courses Example:**

Digital Circuits (ハードウェア構成法, B2 S1) and Computer Organization and Design $(\exists \mathcal{V} \mathcal{L} \neg - \mathcal{P} \mathcal{P} - \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P}, B2)$ S2) courses at USTC, using the Nexys 4 DDR

Complains from students:

- Setting up environment is hard!
- Compiling a small design is slow!
- Different from Makefile-based software flow!

supported for the first time, and now upstreamed.

• The idea is: if I can do this, you also can!

Huge motivation for beginners

Simulation quickstart

All toolchain dockerized

https://github.com/regymm/quasiSoC

User space	riscv-tests, coremark, video out w/ newlib, raw binary	busybox, ymedit w/ uclibc, bFLT	buildroot userspace w/ glibc, ELF	FPGA BRAM)K					INCIDATINENCO? MACIE de LINÍTER		
Operating System	Baremetal	NOMMU Linux MMU Linux		128 KB		256 MB			16 GB			
CPU/peripherals	∂CPU (RV32IMA Zicsr, multicycle QuasiSoC (DDR3, SDRAM, PSRAN HDMI, LCD, VT100 ter	IceStorm, PrjTrellis, and OpenXC7: FOSS FPGA toolchain is no longer a dream										
Hardware platform	Nexys 4 DDR (Artix 7 100t) - Nexys Video (Artix 7 200t, D FPGAOL (Artix 7 35t, Online	Basic Tiles:	Project Icestorm	Project Trellis	Project X-Ray	QuickLogic Database		Digilent Basys 3 Artix-7 XC7A35T	QuickFeather Developme EOS-53			
FPGA-as-a-Service: Educational Web platform				- Logic - Block RAM	~	~	✓ *×	~				
ZYNQ + FPGA all-in-one solution				Advanced Tiles: - DSP			×	From Gowin Tang Nano to				
	FPGAs the cus is requ Simular	GAs are fast de customized I/	evices, to sample	- Hard Blocks - Clock Tiles - IO Tiles			× X ×	Cilinx Kinte	ex 7 xc7	k325t		
		equired.	erals brings a	Routing: - Logic - Clock			f4p	ga.com	ULX3 LEEU-12F/-25F/-45F/-85F	TinyFPGA Ex LFESU-85F/LFESUM5G-85F	iCE40-HX8K Breakout E ICE40HX8K-B-EVN	

My observations:

- In both courses, NO ONE uses DDR! Let alone SD Card! ==> Having large memory/persistent storage is hard ==> No way to understand memory hierarchy
- Synthesis RISC-V code into BRAM is common! ==> No way to load code into softcore
- Debugging is primitive (By LEDs/7-seg display) ==> No way to check memory content if things went wrong
- Only run very small software test code (to fit in BRAM...)

From teachers:

- Hardware is expensive, and breaks over the years
- One board per student is not efficient to manage

flexible amount of LEDs, 7-seg displays, and serial ports.

User's FPGAs can access large storage (128MB to GB level) with a BRAM-like interface, whose content can be uploaded from webpage. Now DSP, ZYNQ7, MMCM, PLL, IOSDERDES are all supported

- Yosys / NextPnR flow
- When first using OpenXC7, I feel there's **no IP cores!** DDR3?? AXI interconnect?? PCIe???
- Realizing Vivado "free to use" IP cores are NOT free software, but vendor-locking traps!

30 nodes are enough to be time-shared by 300 students, even at peak hours.

PL

Periph

Sim

Bitstream

I/Os

User FPGA

DDR3

These are still modern devices: 7-Series lifetime extended to 2035

All-free-software toolchains and IP cores is the coming trend!

Conclusion and Future Expectations

A 32-bit MMU/No-MMU Linux-capable softcore with rich peripherals is implemented by pure Verilog, and supported by OpenXC7, the FOSS FPGA toolchain.

FPGA-as-a-Service online platforms, with the power of emerging FOSS FPGA toolchains, can potentially be a new solution to hardware education.