# RISC-V Day Tokyo 2024 Summer, Tokyo, 1st August 2024 RISC-V System-on-a-Chip with ASCON Cryptography for IoT applications on 180nm CMOS

Khai-Duy Nguyen<sup>1</sup>, Tuan-Kiet Dang<sup>1</sup>, Binh Kieu-Do-Nguyen<sup>1</sup>, Cong-Kha Pham<sup>1</sup>, and Trong-Thuc Hoang<sup>1</sup> <sup>1</sup>University of Electro-Communications (UEC), Tokyo, Japan

## I. INTRODUCTION

The number of IoT devices has grown significantly in recent years, and edge computing in IoT is considered a new and growing trend in the technology industry. While cryptography is widely used to enhance the security of IoT devices, it also carries limitations such as resource constraints or latency. Therefore, lightweight cryptography (LWC) balances commensurate resource usage and maintaining security while minimizing system costs. The ASCON stands out among the LWC algorithms as a potential target for implementation and cryptoanalysis. It provides authenticated encryption with associated data (AEAD) and hashing functionalities in many variants, aiming for various applications. In this brief, we present an implementation of ASCON cryptography as a peripheral of a RISC-V System-on-a-Chip (SoC). The ASCON crypto core occupies 1,424 LUTs in FPGA and 17.4kGE in 180nm CMOS technology while achieving 417Gbits/J energy efficiency at a supply voltage of 1.0V and frequency of 2MHz.

### **II. PROPOSED ARCHITECTURE**



SPI port

JTAG port





The architecture shows the implementation of both the ASCON-128 and ASCON-Hash variants. This design revolves around a 320-bit register containing the state of ASCON and a permutation block to be implemented. There is only one transformation per clock cycle without using a pipelined architecture. Given that this crypto core is integrated with a 32-bit processor and bus system, the data input and output for the ASCON implementation are fixed at 32 bits. A shift register converts the input data from 32 to 128 bits, accommodating fixed-sized parameters larger than 32 bits.

# IV. MEASUREMENT RESULTS

*Table I.* FPGA AEAD in comparison.

|            | LUTs  | Variant   | Frequency<br>[MHz] | FPGA    | TP<br>[Mbps] | TP/Area<br>[Mbps/LUT] |
|------------|-------|-----------|--------------------|---------|--------------|-----------------------|
| iSES'22[1] | 1.330 | ASCON-128 | 107                | Artix-7 | 457          | 0.343                 |

Fig. 2: ASCON crypto core architecture

| IoT'22[2]          | 2,060 | ASCON-128/a                 | 206 | Spartan-6 | 315.2* | 0.153 |
|--------------------|-------|-----------------------------|-----|-----------|--------|-------|
| SOCC'22[3]         | 1,548 | ASCON-128/a<br>ASCON-Hash/a | 244 | Artix-7   | _      | _     |
| <b>ICECS'22[4]</b> | 1,324 | ASCON-128                   | 280 | Artix-7   | 2,560  | 1.93  |
| FCCM'18[5]         | 1,402 | ASCON-128                   | 208 | Spartan-6 | 1,906  | 1.36  |
| This work          | 1,277 | ASCON-128<br>ASCON-Hash     | 294 | Artix-7   | 2,233  | 1.75  |

\*Throughput value of ASCON-128

- Lowest resource consumption with the highest maximum frequency
- Support both AEAD and hash function



First implementation of ASCON on real silicon with sub-µW power consumption

| Operating  | 1.0V~2.0V   |
|------------|-------------|
| Voltage    |             |
| Area[µm2]  | 1,125,000   |
| Gate Count | 86kGE       |
| Frequency  | 32kHz~40MHz |
| Processor  | SERV-32E    |
| Memory     | 4kB         |
| ASCON      | ASCON-128+  |
| variant    | ASCON-Hash  |

## III. CHIP MICROGRAPH

|  |     |       | 6)<br> |
|--|-----|-------|--------|
|  |     |       |        |
|  |     |       |        |
|  | 500 |       |        |
|  |     |       | GLUU   |
|  |     |       |        |
|  |     | 750µm | E      |

Table II. ASIC implementation in comparison.

|                     | Tech.    | Measure    | Area<br>(µm2) | Gate Eq.<br>[kGE] | Energy Efficiency<br>[Gbits/J] |
|---------------------|----------|------------|---------------|-------------------|--------------------------------|
| <b>ISDFS'24[6]</b>  | 22nm     | Simulation | 2,206         | -                 | 2,223                          |
|                     | 130nm    |            | 41,821        | -                 | 179                            |
| <b>ISCAS'22[7]</b>  | 22nm     |            | 2,193         | 11                | 1,528                          |
| ICECS'22[8]         | 28nm     |            | 4,971         | 10.1              | 134                            |
| SOCC'22[3]          | 28/32nm  |            | _             | 25.1              | 3,628                          |
| This work           | 180nm    | Silicon    | 166,802       | 17.4              | 417<br>3,628*                  |
| *Scaled to 32nm [9] | <u> </u> |            |               | !                 |                                |

### REFERENCES

K. Raj, and S. Bodapati, "FPGA Based Light Weight Encryption of Medical Data for IoMT Devices using ASCON Cipher," iSES, 2022.
S. Khan *et al.*, "Scalable and Efficient Hardware Architectures for Authenticated Encryption in IoT Applications," IEEE Internet of Things Journal, 2021.
X. Wei *et al.*, "RECO-HCON: A High-Throughput Reconfigurable Compact ASCON Processor for Trusted IoT," SOCC, 2022.
C. Guo *et al.*, "Unified Lightweight Authenticated Encryption for Resource-Constrained Electronic Control Unit," ICECS, 2022.
F. Farahmand *et al.*, "Improved Lightweight Implementations of CAESAR Authenticated Ciphers," FCCM, 2018.
I. Elsadek, and E. Y. Tawfik, "Efficient Programable Architecture for LWC NIST FIPS Standard ASCON," ISDFS, 2024.
I. Elsadek *et al.*, "Hardware and Energy Efficiency Evaluation of NIST Lightweight Cryptography Standardization Finalists," ISCAS, 2022.
N. Roussel *et al.*, "CMOS/STT-MRAM Based Ascon LWC: a Power Efficient Hardware Implementation," ICECS, 2022.
A. Stillmaker and B. Baas, "Scaling Equations for the Accurate Predic- tion of CMOS Device Performance from 180nm to 7nm," Integration, 2017.

#### ACKNOWLEDGEMENT

The VLSI chip in this study has been fabricated through the activities of VLSI Design and Education Center (VDEC), the University of Tokyo with the collaboration by Rohm Corporation and Toppan Printing Corporation.

Email: khaiduy@vlsilab.ee.uec.ac.jp