

The future of RISC-V has no limits

May 31, 2022

Leading the RISC-V revolution

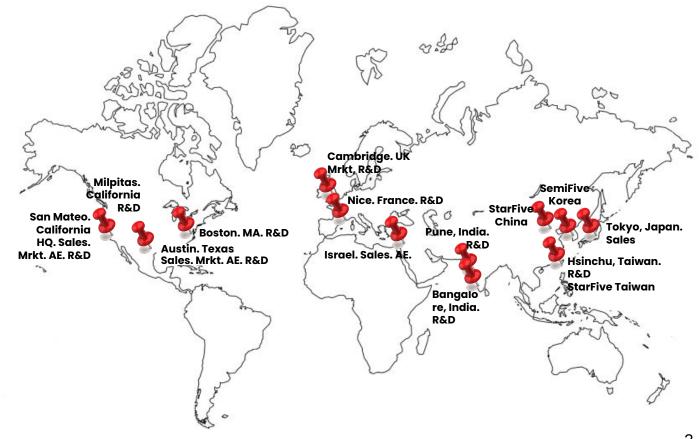
2018, 2019, 2020: SiFive Recognized as Most Respected Private Semiconductor Company

We invented **RISC-V**

SiFive's founders are the same UC Berkeley professor and PhDs who invented and have been leading the commercialization of the RISC-V Instruction Set Architecture (ISA) since 2010

SiFive

SiFive global presence

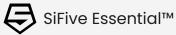

Presence

- 10+ Offices
- 600+ Employees (420+ Engineers)
- 375+ Tapeouts(OpenFive)
- 300+ Design Win(100 companies)
- 8 of the top 10 semiconductor companies

World Leading R&D

- Inventors of RISC-V
- 100+ PhDs
- Highly experienced Processor team (e.g., Arm, Apple, AMD)

Backed by the World's Most Innovative VCs, Silicon Companies



SiFive

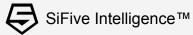
Undisputed leader in RISC-V computing

Complete portfolio of processors from embedded to high-performance computing

CPU Cores

32 and 64-bit Processors

- Microcontrollers, IoT devices, real-time control, control plane processing
- Highly customizable to application specific requirements
- Mature, industry proven designs



SiFive Performance™

64-bit Application Processors

- Networking, Infrastructure, Enterprise, Consumer
- Highest performance, most advanced
 RISC-V Processor available
- Scale out, high performance, processing capabilities with vector compute

Al Cores

Scalable AI Processors

- Edge AI, Cloud, Training, Inference
- Very high performance and efficiency for AI workloads (vector processing)
- Built on top of RISC-V Vectors and the SiFive Intelligence Extensions

\$2.5B+ V

Valuation via \$175M Series F Funding

"The market has spoken and made it abundantly clear that RISC-V computing will be competing for the heart of all future computing platforms. As the founder and market leader of RISC-V computing it's our role to lead this ecosystem forward and offer customers advanced computing alternative to Arm and others. This valuation is a validation of our strategy, our incredible team, and our singular focus on building the leading portfolio of high-performance RISC-V compute products in the market. Our customers are signaling strong demand for SiFive to deliver the highest level of performance as quickly as possible."

- Patrick Little, President, Chairman, and CEO, SiFive

The Top 3 Global ISAs

x86 RRISC-V° arm

Recent Announcements

- Introduced new Product family branding aligned to Market Focus
- Entered Performance-driven markets with the fastest commercially available RISC-V IP
- Entered AI & ML-enabled markets with 2 RISC-V vector enabled processor IP products
- Execution of 3 Performance product launches & 3 RISC-V portfolio feature in 1 year
- Intel Foundry Services IP-Alliance Partner with optimized RISC-V IP & Next-Gen Developer Board

Design Wins

- Renesas
- Tenstorrent
- Deep Vision
- ArchiTek AiOnIc
- eTopus
- FADU
- Synaptics
- Intel Foundry Services
- Samsung
- Qualcomm
- 0 Others Tess Constrainductor Col

Partnerships

- Intel Foundry Services
 - IP Optimized for Intel 4 Process Technology
 - "Horse Creek" RISC-V Developer Platform in 2022
- Samsung Foundry
 - AI SoC Development Platform
- TSMC
 - First N5 RISC-V SoC Tapeout
- DARPA
 - First RISC-V IP provider

RISC-V Ecosystem

- Canonical
 - Ubuntu OS
- Green Hills
 - INTEGRITY RTOS
- SEGGER
 - emRun library
- SYSGO
 - PikeOS RTOS
- Wind River
 - VxWorks RTOS

7

SiFive Vector Processors

May 2022

SiFive RISC-V processor IP portfolio

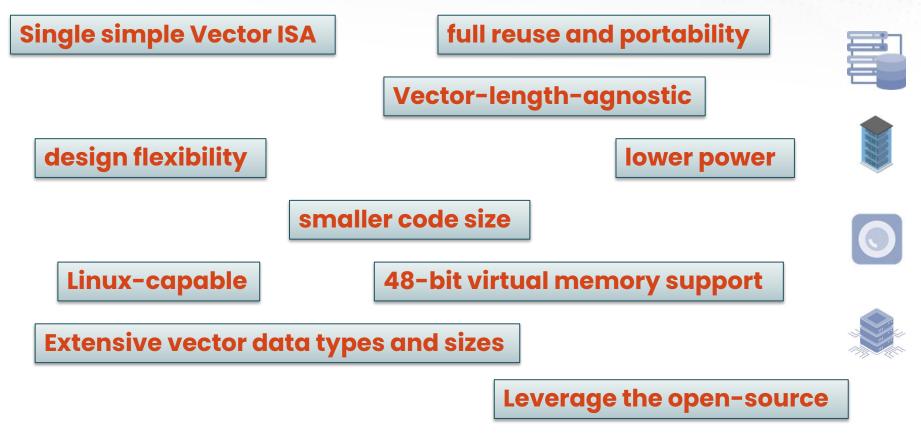
	SiFive [®] Intelligence™	SiFive [®] Pe	erformance™	
	X200-Series Optimal Al Acceleration SW + HW Solutions	P200-Series Performance efficiency Integrated Vectors	P500-Series High performance 3-wide OoO Superscalar	
	X280	P270	P550	
64-bit high-performance Linux capable application	Al processor for Edge and DataCenter ML applications Al acceleration instructions 512b vector register length	Optimized performance Vector processor 256b vector register length 9 Stage Vector pipeline	>8.6 SpecINT2k6/GHz Application processor 13 Stage Pipeline Multi-core, multi-cluster	
processors		SiFive [®] Essential™		
	2-Series Power & area optimized 2-3 stage single-issue	6-Series Performance efficiency 8 stage single-issue	7-Series High performance 8 stage Superscalar	
		U6	U7	
		64-bit, High performance	64-bit, Superscalar perf.	
	S2	S6	S7	
32/64-bit real time scalable performance deeply	64-bit , Area optimized	64-bit, power efficiency	64-bit, High perf. embedded	
	E2	E6	E7	
embedded processors	Smallest, most efficient	Balanced perf. and efficiency	32-bit, optimized performance	

A

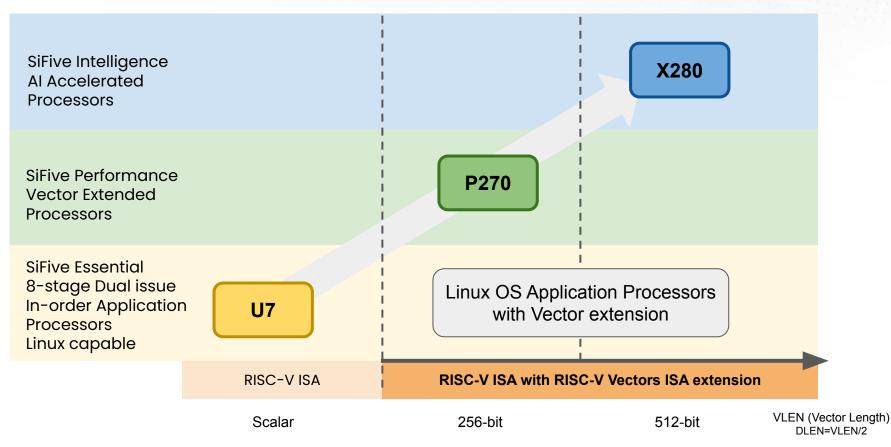
SiFive

High Performance Broadest Portfolio Relentless Innovation

Evolving modern application trends


Drive towards simplicity, extensibility, and portability

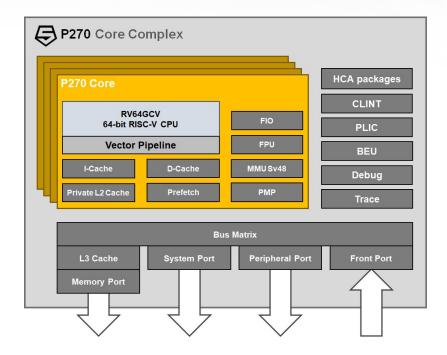
Modern neural network models rapidly evolving Access to the open-source community



RISC-V Vectors benefits

SiFive Vector Processors portfolio

SiFive


SiFive Performance P270

64-bit RISC-V Core Virtual Memory, Linux OS Support Hypervisor Extension

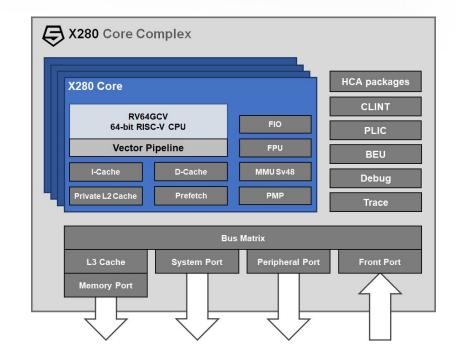
Vector Unit executing RISC-V Vector 256-bit Vector Length

8-Stage Dual-Issue In-Order Superscalar Architecture. Decoupled Vector Pipeline

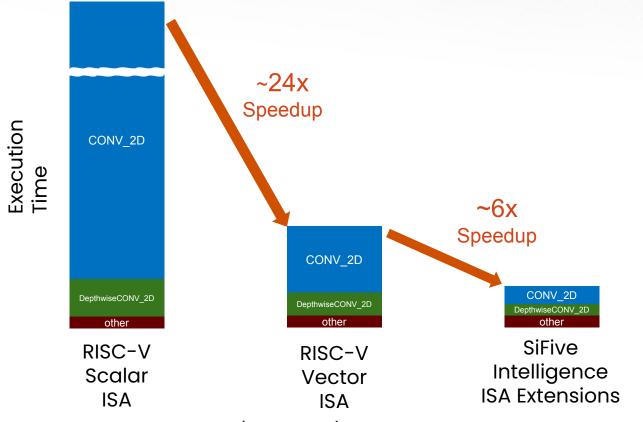
Coherent Multicore Complex Up to 16 cores

SiFive

SiFive Intelligence X280


64-bit RISC-V Core Virtual memory, Linux OS Support

512-bit vector register length SiFive Intelligence Extensions Al computation data type support


TensorFlow Lite Framework support Optimized NN operators Wide Range of NN models ported

8-Stage Dual-Issue In-Order Superscalar Architecture. Decoupled Vector Pipeline

Coherent Multicore Complex Core Local Ports for Accelerator Hardware connection

SiFive Intelligence: Accelerate end-to-end models

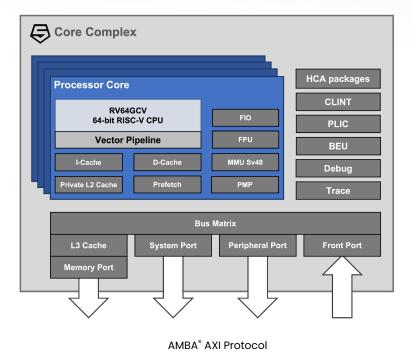
MobileNet v1 Inference (batch size=1), VLEN=512

Scalable solution for wide range of Al use cases

Wearables SmartHome		Mobile	Industrial / Drones	Data Center (Servers		
~0.1 - 1 TOPS	~0.1 - 2 TOPS	1 - 5 TOPS	1 - 20 TOPS	>100 TOPS		
 Imaging Sensor / Signal Pro Sensor Filtering / F Speech Recognition 	usion			High Performance Computing (HPC) Dynamic Encryption / Security Audio/Video Streaming /		
	Prediction M	Iodeling / Control		Compression		
X280		X280	NN Accelerator	80 J NN Accelerator		
core with AI op Extensions	ntroller/Applications otimized Vector ofiguration options er power	 Advanced Control core with AI optimi Extensions Multi-core configu Connectivity to NN 	ized Vector ration options	Advanced Controller/Application core with AI optimized Vector Extensions Multiple instantiations of Multi-core configuration option Connectivity to large NN accelerators Single unified system memory		

SiFive

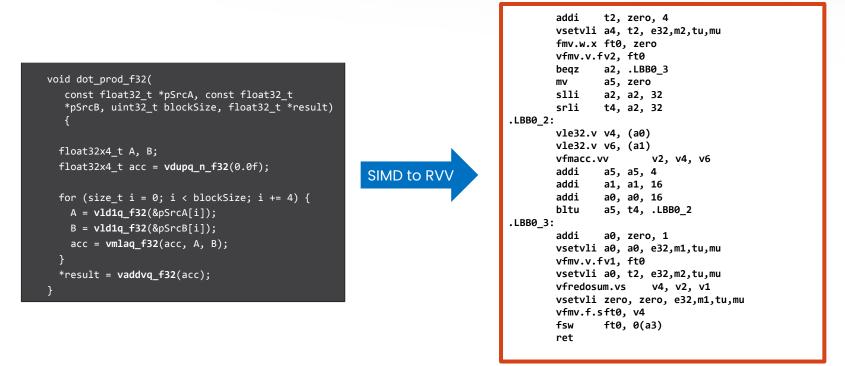
SoC connection ports


Memory Port Highest performance interface to memory

System Port Access to high-bandwidth uncached memory or devices

Peripheral Port Interface with lower speed peripherals

Front Port External Masters for accessing Core Complex devices and ports


FIO Fast I/O Improves the throughput of uncached IO transactions (MMIO) subsystem

Translate SIMD code to RISC-V Vectors

SiFive Recode: Protect your existing software investment, migrate with confidence

Compiled SiFive Assembly Code

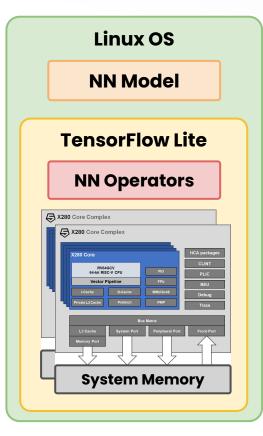
SIMD Source code

Extending LLVM with auto-vectorizing compiler

- SiFive Toolsuite includes both GCC and LLVM compilers
- SiFive LLVM compiler supports RISC-V Vector intrinsics and auto-vectorization

C Code

```
void saxpy (size_t n, const float a,
const float *x, float *y)
{
  for (size_t i = 0; i < n; ++i) {
    y[i] = a * x[i] + y[i];
  }
}
```


Auto-Vectorized Code

.LBB0 5: a3, a4, -16 addi vle32.v v26, (a3) vle32.v v27, (a4) vfmul.vv v26, v26, v25 vfmul.vv v27, v27, v25 a3, a5, -16 addi vle32.v v28, (a3) vle32.v v29, (a5) vfadd.vv v26, v26, v28 vfadd.vv v27, v27, v29 vse32.v v26, (a3) vse32.v v27, (a5) addi a7, a7, -8 addi a4, a4, 32 addi a5, a5, 32 a7, .LBB0 5 bnez

Re-Written Using C Intrinsics

```
LBB0_1:
    vsetvli a3, a0, e32,m8,ta,mu
    vle32.v v8, (a1)
    vle32.v v16, (a2)
    vsetvli zero, a3, e32,m8,tu,mu
    vfmacc.vf v16, fa0, v8
    sh2add a1, a3, a1
    vsetvli zero, zero, e32,m8,ta,mu
    sub a0, a0, a3
    vse32.v v16, (a2)
    sh2add a2, a3, a2
    bnez a0, .LBB0_1
```

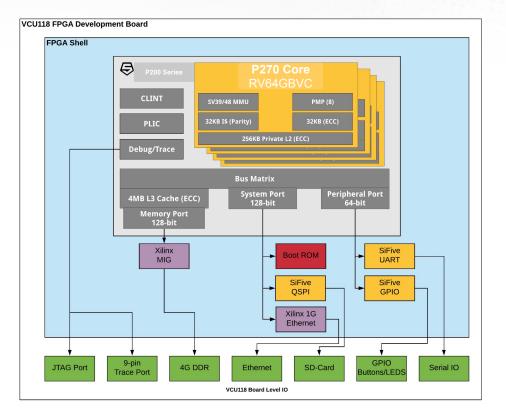
Edge Al inferencing running TensorFlow Lite

Out-of-the-box full software and processor hardware solution with TensorFlow Lite, running under Linux OS

Run NN models in the Object detention, Image Classification, Segmentation; Text and Speech domains

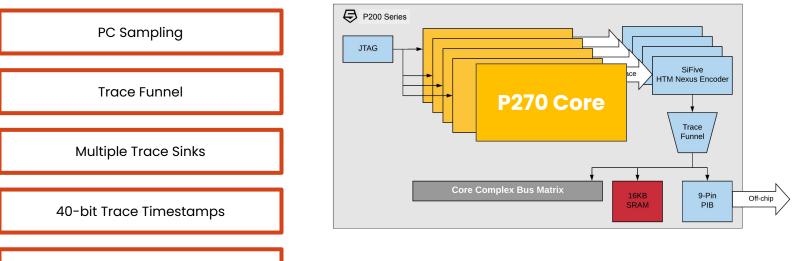
Broad range of optimized NN operators in Float 32-bit and Quantized 8-bit

Enables NN models to be run with minimal porting effort SiFive


FPGA Software Development Platform

Off the Shelf FPGA Platform for Multi-Core Software Development

- Based on Xilinx VCU118 Readily available high-capacity FPGA development board
- Image contains multi-core X280 or P270 and IO subsystem running at 32MHz.
- Ethernet, Serial, Debug, Trace, 4GB DDR


Freedom-U-SDK Linux BSP

- SD-Card based Linux boot image with naitive development tools
- Cross-Compiler environment for
 User-Space application development
- Yocto based workflow also available for BSP level development

Nexus HTM Trace Encoder

Instrumented Trace (ITC)

B

SiFive

Future roadmap and enhancements

SiFive Intelligence

X200-Series Optimal AI Acceleration SW + HW Solutions

X280

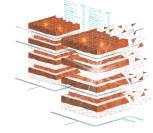
Al processor for Edge and DataCenter ML applications Al acceleration instructions 512b vector register length

SiFive Performance

P200-Series Performance efficiency

Integrated Vectors

P270


Optimized performance Vector processor 256b vector register length 9 Stage Vector pipeline New, significantly higher performance product line

Enriched feature set

Extended AI software library support

Enhanced support for Custom Accelerators

SiFive Vectors The Intelligent Choice

SiFive Vector processors:

• High performance and built for scalability

SiFive is driving innovation in AI:

- SiFive Intelligence Extensions for optimized
 power and performance
- Future proof from evolving ML models
- Easy adoption into existing platforms

RISC-V Vectors are the intelligent choice:

- Consolidating today's fragmented
 alternatives
- Open platform with vast open-source community

Custom silicon with differentiated IP

Custom Silicon Solutions

May 2022

About OpenFive

Custom silicon focus with differentiated IP

SoC design capabilities from spec-to-silicon

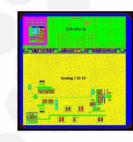
HQ in Silicon Valley, CA with offices globally

SiFive Business Unit

A solution-centric silicon company delivering high quality

2022 OpenFive™. All Rights Reserved.

Custom Silicon Optimized for your Applications



HPC/Compute/Networking

Capabilities

5nm

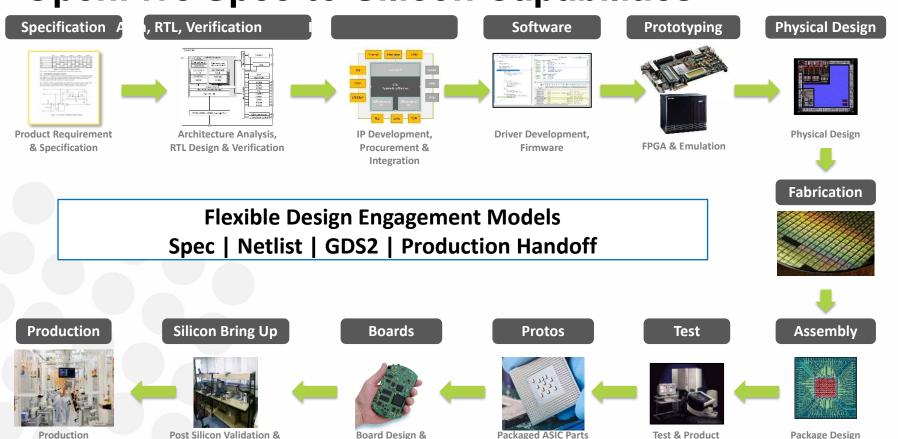
TSMC 5nm silicon RISC-V, HBM3, D2D I/F

2.5D & Chiplets

AI

und constraints life	LANS ST.
	and the state
Contraction of the second seco	A A A

- OpenFive Die-to-Die (D2D) IP
- 2.5D Interposer Design Capabilities
- Advanced Packaging: PI/SI Flows


	Processing	Memory Controller / PH		ntroller / PHY	Security		Vision Subsystem	
Subsystem			100004984 54144		SiFiveShield		CEVA **	
€U74	₽ 074		IDES AND MITS		Criptia Acceleratory (ARX SHATTANN) Becare Back (Roat of Shar) (RDM) OTF / Rey Managoment		Vake DOP CSI.	
🔁 U74	€ U74		Platform Management Unit				Al Subsystem	
-	-				Real-time		CEVA Management	
€U74	€ U74							
€ U74	€ U74	1	Customer-specific Accel.		LANRT	SP90	25908 to 2018 12 Carto	
		8	Syster	n DMA	uic .	-	Video Sub	system
Sector .	Inere		Low Speed I/O		time Stamp	Teer	III Sente Bidonve Envisite-Geciste	
10.00		1	INAT 1990		Graphics/Display		PEC Crossin Decade	
High S	ITO Marc		uc	P458	0FU 35/80 Accelerations		Audio Subsystem	
	-			MUT/MIC	Englay Contendar		CEVA AND OF	
Gegatelite. Vac ficture	PCIe Gan 8		Die-	2.010	HEME 2.0 OF			Ande

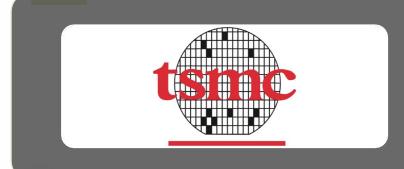
RISC-V based Apps Processor SOC

2022 OpenFive™. All Rights Reserved.

OpenFive Spec-to-Silicon Capabilities

Manufacturing

2022 OpenFive[™]. All Rights Reserved.


& Logistics

Software Bring-up

& Assembly

Engineering

Deep Partnerships and Engagements with Major Foundries

TSMC Value Chain Aggregator (VCA)

Early access to PDKs, foundry IP,

preferred business terms

Taped-out 250+ designs

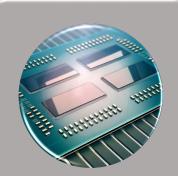
Leading-edge engagements (16, 12, 7, 6, 5nm)

Global Foundries

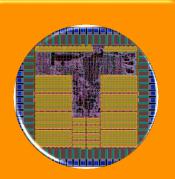
22FDX platform ideal for wearable & hearables Multiple mission critical application engagements in 22FDX, 12LP+

OpenFive IP developed in 22FDx and 12LP+

OpenFive SoC IP Portfolio – Customizable and Differentiated openfive


Connectivity

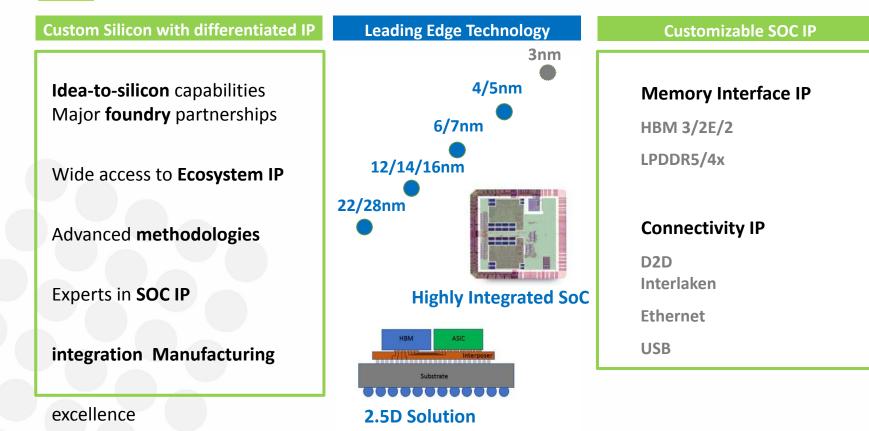
- 400/800GbE MAC
- RS/KR/KP FEC
- FlexE
- LL Chip2Chip Controller
- AXI add-on


Memory Interfaces

- HBM2E PHY & Controller
- HBM3 PHY & Controller*
- LPDDR5/4X PHY
- AXI add-on

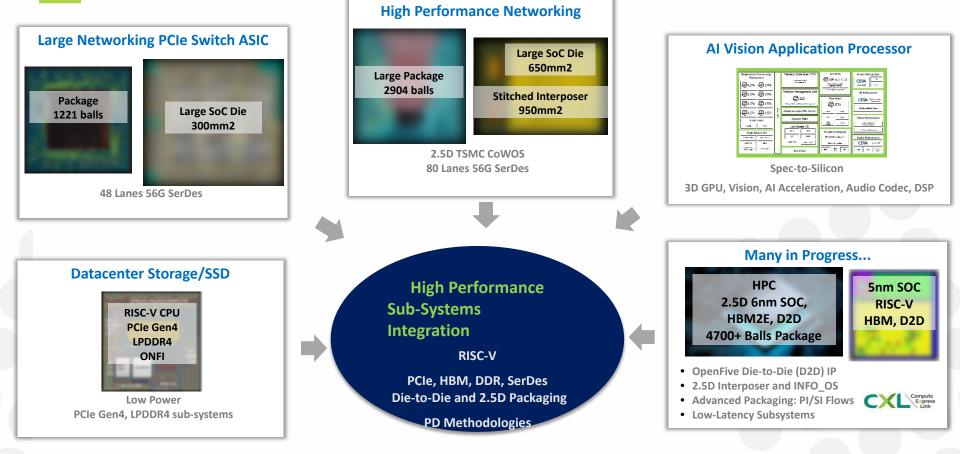
Chiplets

- Die-2-Die PHY
- Universal Die-2-Die Controller
- Light weight FEC
- Ethernet Chiplet subsystem*


System IPs

- PVT Sensors
- Custom SRAMs/TCAMs
- PLLs
- DLLs
- LVDS IOs

Soft and Physical IP on leading process nodes


OpenFive Products – Custom Silicon Solutions with Differentiated IP

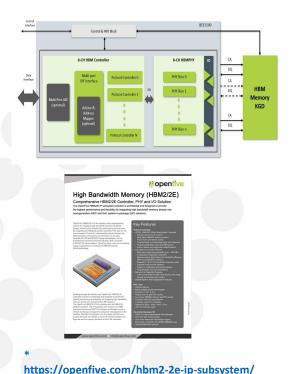
Custom Silicon Experience with High Performance SoCs

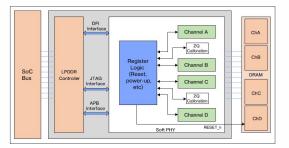
OpenFive IP Portfolio

Memory Interface IP Subsystems HBM3, HBM2, HBM2E, LPDDR5/4X

Connectivity IP Die-2-Die(D2D), Interlaken(C2C), Ethernet, USB

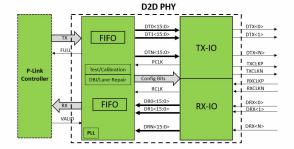
System & Peripheral IP DMA, SPI & more ...






OpenFive IP Sub-Systems - Differentiated and Customizable Openfive

LPDDR5


HBM

https://openfive.com/lpddr5-4x-ip-subsystem/

D2D

https://openfive.com/die-to-die-ip-subsystem/

2022 OpenFive[™]. All Rights Reserved.

Creating The Next Wave: Chiplet Solutions Openfive

Shrac

PROCESSOR CHIPLETS

Scalable architecture:

• Add dies to increase performance

Cost effective:

• Better yields with smaller die

Time to Market:

• Combine custom SoC + available die

Chip Size limit : maximum reticle size Very large Die : Lower Yield, Power Limit Bandwidth limit: Number of IO on die

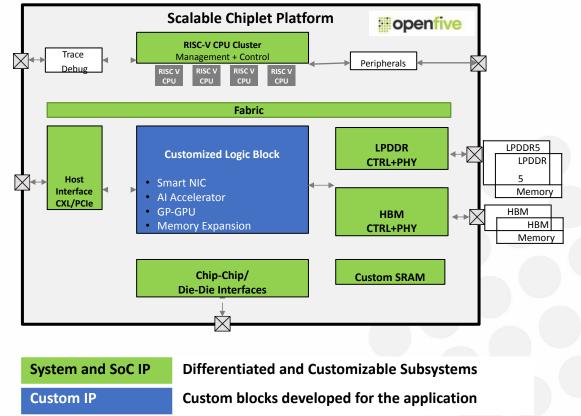
Time to Market: Design complexity and IP readiness

IO CHIPLETS

- Higher Bandwidth:
 - Increase # of IO

Time to Market:

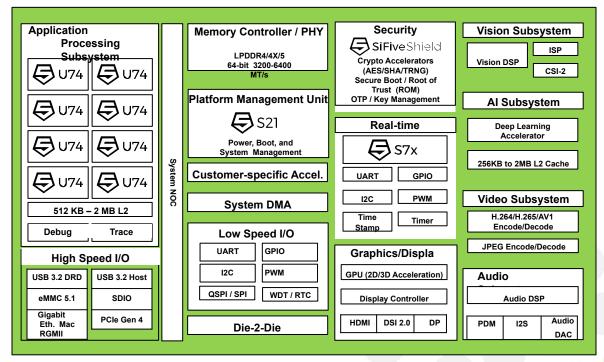
- Mix die from different nodes
- Use pre-verified chiplets


Lower Development Cost

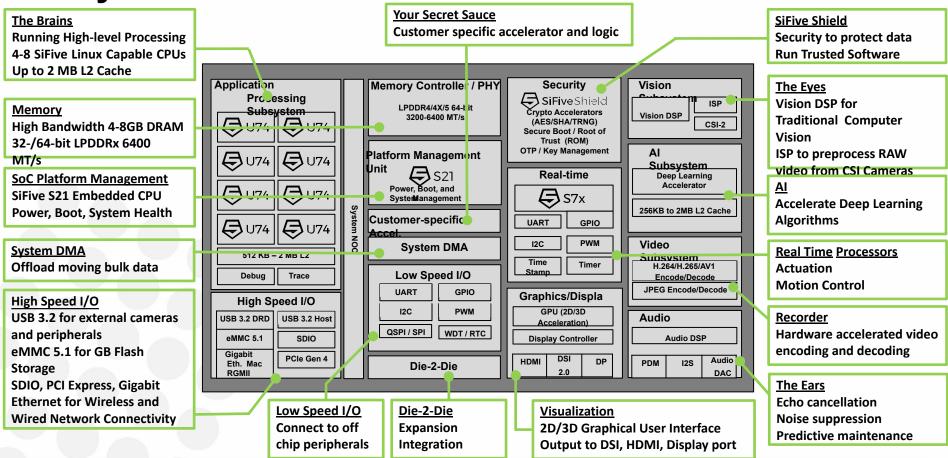
• Share chiplets across products

OpenFive Scalable Chiplet Platforms (Compute, Memory and popenfive Connectivity)

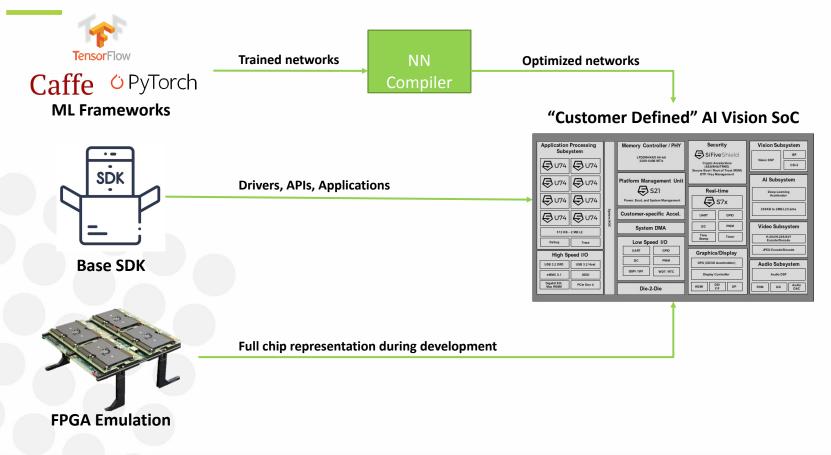
- Die-to-Die Subsystem:
 - 640Gbps throughput D2D (single word)
 - Scalable up to 4Tbps/mm on beachfront
- Chip-to-Chip Subsystem:
 - 32G NRZ SerDes to 112G PAM4 SerDes
 - Scalable from 1 to N Serdes
- Memory Subsystem:
 - 16/32-bit LPDDR5/4x at 6.4Gbps
 - 8/16-channel HBM IOs at up to 7.2Gbps
 - Custom SRAM Macros that can achieve up to 40% Area/Power benefits at up to 2GHz
- CPU Subsystem:
 - 64b RISC-V multi-core, multi-cluster CPU
 - P-I-E Depending on application needs
- Advanced 2.5D Package:
 - Interposer to connect multiple die on advanced nodes – silicon proved!



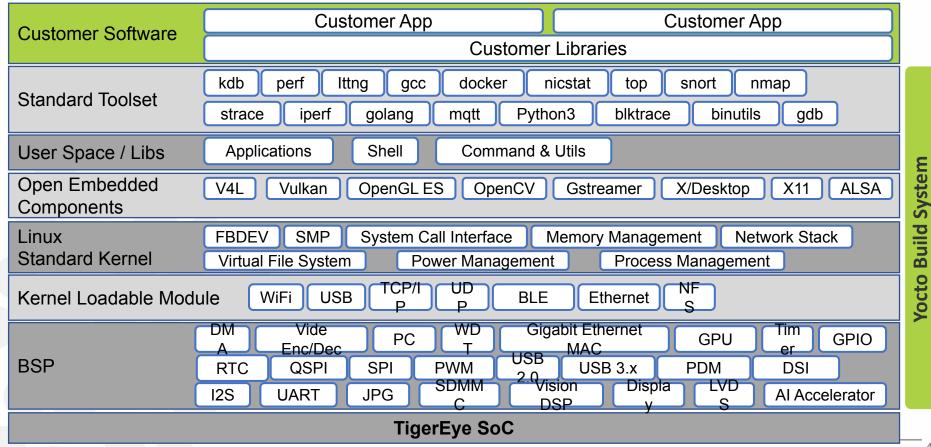
Custom silicon with differentiated IP OpenFive RISC-V Based AI Vision SoC Platform


OpenFive Al Vision Platform

- Customizable Application Processor Chassis
 - Powerful Linux Capable RISC-V CPUs
 - High Performance LPDDR4/5 for data processing
 - Heterogenous subsystems to offload and accelerate various usages
- Reuse of pre-hardened subsystems
- Focus on your key differentiator


openfive

Key Features of an Al Vision Platform


openfive

Software Development for the AI Vision Socopenfive

Software Stack

Thank you