Accelerating Custom Integrated Circuit Design: Challenges, Innovations, and Open-Source Initiatives

Mehdi Saligane University of Michigan mehdi@umich.edu

June, 2023

Evolution of Software Dev

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent

Context and Background

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent Looks like current hardware dev!

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent Looks like current hardware dev!

Describe your experience with (tapeout) toolchain in one word

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent Looks like current hardware dev!

Describe your experience with (tapeout) toolchain in one word

- Software Dev in the 90s
 - Vendor provided compiler Ο
 - Toolchain incompatibilities Ο
 - Looks like current OS dependent Ο hardware dev!

70 000 HW vs 830 000 SW Eng.

Describe your experience with (tapeout) toolchain in one word

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent Looks like current hardware dev!

UG student Ali Hammoud to present his winning Code-a-Chip design at ISSCC 2023

Catharine June • February 16, 2023

Hammoud's project is based on the open-source hardware design tool called OpenFASoC, developed at Michigan.

Describe your experience with (tapeout) toolchain in one word

<u>Ali Hammoud</u>, a second-year student in computer engineering, is a winner in the inaugural international Code-a-Chip competition. He will present his project in open-source chip design at the <u>2023 International Solid-State Circuits</u> <u>Conference</u> (ISSCC), along with 6 other design teams from around the world. His design is called <u>OpenFASoC: Digital LDO Generator</u>.

Hammoud's design is based on the open-source tool called <u>OpenFASoC</u>, short for Open-Source Fully Autonomous System-on-Chip, which was codeveloped by his faculty advisor on the project, Dr. Mehdi Saligane. OpenFASoC was developed for analog circuit design, which is more difficult to automate than digital circuit design.

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent Looks like current hardware dev!

Describe your experience with (tapeout) toolchain in one word

THERAN ANTE

Hardware @ Google Software @ Google New deploy 18 months Push once a week New Deploy 18 months Normal Push 4-6 hours All Replaced ~6 years Emergency Push <1 hours ~1 version deployed ~4 versions deployed 70 000 HW vs 830 000 SW Eng.

- Software Dev in the 90s
 - Vendor provided compiler
 - Toolchain incompatibilities
 - OS dependent Looks like current hardware dev!

Is Hardware Development Broken?

Describe your experience with (tapeout) toolchain in one word

Hardware @ Google New deploy 18 months

New Deploy All Replaced

y 18 months d ~6 years

~4 versions deployed

Software @ Google Push once a week

Normal Push4-6 hoursEmergency Push<1 hours</td>

~1 version deployed

Is Hardware Development Broken?

Design costs rising with every new technology node

The Missing Pieces of Open Design Enablement:	
A Recent History of Google Efforts	
Invited Paper	

Mehdi Saligane

mehdi@umich.edu

University of Michigan

Ann Arbor, Michigan

Tim Ansell	
tansell@google.com	
Google	
Mountain View, California	

 T. Ansell and M. Saligane, "The Missing Pieces of Open Design Enablement: A Recent History of Google Efforts : Invited Paper," 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), San Diego, CA, USA, 2020.

Traditional vs Automated Analog Design

Analog design flow

Manual/Custom

Analog design flow Significant number of manual and custom steps.

Analog vs. Digital design flow

Automated

Manual/Custom

 Analog design flow Significant number of manual and custom steps.

 Digital design (grid-based) flow Almost entirely automated.

Generated Analog into Digital design flow

Generated Analog into Digital design flow

Generated Analog into Digital design flow

Initially only proprietary design flow

Now proprietary or open source design flow

OpenFASoC!

Automated **portable** analog

Overview of FASOC

Fully Autonomous SoC Synthesis

- DARPA IDEA Program (OpenROAD and FASoC)
- Multi-University and Industry effort
- Multiple tape-outs in TSMC 65, GF12LP, SkyWater 130nm

Overview of OpenFASOC Today

Fully Autonomous SoC Synthesis

- DARPA IDEA Program, now funded by Google, NIST and others
- Multiple tape-outs in TSMC 65, GF12LP, SKY130, GF180MCU, Intel 16

more

MPW8

MPW1

SKY130

MPW2 MPW4 MPW5 MPW6 MPW7

CHIPS Alliance Technology Update 2022-12

CHIPS Alliance Workshop

2021-11

ering Barriers to Chip Desig

RISCV Alliance Japan 2022-12

Trade-offs & Design Constraints Examples

ICEBEAN HAICEBEAN HAICEBEAN HA Rohatsdem Rohatsdem Rohatsdem

D-LDO Power Routing Example

Performance loss caused by PnR

ERROR

DETECTION

(COMPARATOR

/ADC)

- Large Series Resistance caused by wiring 0 congestion for increased array size
- Unpredictable wiring due to random Ο placement of power cells

D-LDO Power Routing Example

Constraints to improve performance

- Technology agnostic fencing to constraint placements
- Use power stripes to improve series R problem
- Automatic analysis of technology database file for determining the stripe metal layers
- Taped out in BiCMOS and bulk
 130nm, TSMC 65LP and GF12LP

Performance / Complexity Tradeoff

• FASoC augments digital flow with APR tool placement/routing constraints and minimizes the (performance loss * complexity)

On-Going Projects & Contributions

Open-Source IC & tapeouts

→ 1st Open Silicon Results

NIST Nanofabrication Accelerator

- → 1st Open Nanotechnology Platform
- → Cryogenic CMOS
- Low-Power IC Design
 - → **Rapid** Prototyping for Wearables

Hardware Security

→ 1st Open Root of Trust SoC

On-Going Projects & Contributions

NIST Nanofabrication Accelerator

- → 1st Open Nanotechnology Platform
- → Cryogenic CMOS
- Low-Power IC Design
 - → *Rapid* Prototyping for Wearables

Hardware Security → 1st Open Root of Trust SoC

Big-Bang Events: Open-Source PDKs

- First open-source PDK (November 2020)
 - > SkyWater 130nm CMOS
 - <u>https://github.com/google/skywater-pdk</u>
- Second open-source PDK (October 2022)
 - GlobalFoundries 180nm MCU
 - https://github.com/google/gf180mcu-pdk
- Third open-source PDK (March 2023)
 - > IHP 130nm BiCMOS
 - <u>https://github.com/IHP-GmbH/IHP-Open-PDK</u>
- Permissive Apache 2.0 licensing

OpenFASOC Demonstrator MPW-I: 64 sensors + D-LDO

comparatc

- Actively contributing to the open source community
- 1st open FASoC flow built on top of OpenROAD tools
 - Focused on the Temp. Sensor Generator Ο
- FASoC testchip in SKY130:
 - Includes Caravel SoC 0
 - 64 Temp. Sensor Mesh Ο
 - LDO ported (~ a week) 0
 - Updated strongArm latch
 - 5v native NMOS switch

Test-chip in MPW-I

Temperature Sensor Topology

• Temperature Sensor Template Design

- Q. Zhang et al., "An Open-Source and Autonomous Temperature Sensor Generator Verified With 64 Instances in SkyWater 130 nm for Comprehensive Design Space Exploration," in IEEE Solid-State Circuits Letters, 2022.
- M. Saligane, et al., "All-digital SoC thermal sensor using on-chip high order temperature curvature correction," 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 2015, O

Temperature Sensor Topology

• Temperature Sensor Template Design

Measurement Results

• 64 sensors array used for low-cost design space exploration

Measurement Results

Below 1 °C inaccuracy and SOTA results

Summary Results

- **Only** working Chip from MPW-I using **Open** Tools
- Published at the Solid-State Circuits Letters!

	This Work			JSSC '20	JSSC '19	CICC '18	ISSCC '17
	B3-hd-11	A9-hd-7	A7-hd-9	[5]	[6]	[7]	[4]
Technology	SkyWater 130nm (Open-source PDK)		55nm	65nm	180nm	180nm	
Generator- based Design	Yes			No	No	No	No
Supply Voltage (V)	1.8V			0.8 ~ 1.3	0.5	0.8 ~ 1.4	1.2
Area (µm ²)	8095			1770	630000	65000	8865
Temperature Range (°C)	-40 ~ 80	-20 ~ 100	0 ~ 120	-40 ~ 125	0 ~ 100	-20 ~ 80	-20 ~ 100
Conversion Time (ms)	0.98	125	125	1.31	300	840	8
Inaccuracy (°C)	-0.97/1.08 3σ	-0.59/0.61 3σ	-0.67/0.74 3σ	-0.7/0.7 3σ	-1.53/1.61 Min./Max.	-0.7/+1.3 Min./Max.	-0.22/0.19 3σ
Relative Inaccuracy	1.71%	1.00%	1.18%	0.85%	3.14%	2.00%	0.35%
Power (µW)	17.33	0.25	0.13	9.3	0.000763	0.0013	0.075
Energy/Conv. (nJ)	16.92	31.38	16.25	12.2	0.23	11	0.6
Resolution (mK)	78	21	24	16	300	110	73
Resolution- FoM (pJ·K ²)	101.9	13.4	9.7	3.1	20.7	140	3.2

OpenFASOC on MPW-II: 1st Open Source AMS SoC

- Included initial support for voltage domains in OpenROAD
- Implementation of the OpenTitan SoC using an ECO flow to fix hold timing with degrading the F_{MAX}
- Temperature Sensor generator is using an end-to-end Open Source flow
- Updates to the D-LDO generator:
 - Embedded voltage references
 - Decap cells using MIM cap.
 - \circ Multiple implementations and I_{LOAD}
- <u>https://efabless.com/projects/239</u>
- https://github.com/msaligane/caravan_openfasoc.git

OpenFASOC on MPW-II: D-LDO generator

- Aux cells are swapped to experiment with different switch structures
- Multi-gain feedback loop is implemented

Design 1	Design 2	De	sign 4	Desig	;n 5	
Vin = 3.3V	Vin = 3.3V	Vin = 3.3V	Vin	= 3.3V	Vin =	3.3V
Iload = 25mA	Iload = 25mA	Iload = 25mA	ligad	= 25mA	I load = 2	5mA
C = 10pF	C = 5pF	C = 10pF	C=	= 10pF	C = 5	pF
20		200		-	<u>.</u>	
Design 6	ign 6 Design 7 De		Design 9		Design 10	
Vin = 3.3V	Vin = 3.3V	Vin = 3.3V	Vin = 3.3V		Vin = 3.3V	
I _{load} = 25mA	I _{load} = 35mA	I _{load} = 35mA	Iload	= 35mA	I _{load} = 35mA	
C = 10pF	C = 10pF	C = 10pF	C = 10pF		C = 10pF	
					-	
			Design #	Switch Type	ILOADMAX (mA)	Multi- Gain
			1	PMOS	25	Yes
			2	PMOS	25	Yes
			3	PMOS	25	No
	CONTRO	LLER	4	NATIVE NMOS	25	Yes
			5	NATIVE NMOS	25	Yes
CAP	VREF 1		б	NATIVE NMOS	25	No
UNITS			7	PMOS	35	Yes
	GENS I		8	PMOS	35	No
FENC	ED POW	ER	9	NATIVE NMOS	35	Yes
TRANS	ISTOR AF	RRAY	10	NATIVE NMOS	35	No

36

OpenFASOC on MPW-II: OpenTitan Root of Trust

- 1st SoC using AMS components
- The Opentitan SoC contains
 - UART, SPI interfaces
 - 16KB of SRAM (OpenRAM)
 - D-LDO is used to power-up all the blocks
 - All Peripherals are connected through Tilelink
- Timing has been carefully checked and an ECO flow has been used to avoid altering the F_{MAX} while fixing hold violations

On-Going Projects & Contributions

NIST Nanofabrication Accelerator

- → 1st Open Nanotechnology Platform
- → Cryogenic Enablement & Design
- Low-Power IC Design → *Rapid* Prototyping for Wearables **Hardware Security** → 1st Open Root of Trust SoC

Automated & Open Nanotechnology Platform

NIST and Google to Create New Supply of Chips for Researchers and Tech Startups

Cooperative research agreement aims to unleash innovation in the semiconductor and nanotechnology industries.

September 13, 2022

- Partnership with NIST:
 - Re-characterization of SKY130 with wide range temperatures including cryogenic (4K)
 - Automated test structures Generators
 - Nanofabrication Accelerator Platform

Automated & Open Nanotechnology Platform CMOS Integration Critical for Measurements

• New devices and materials are continually proposed by the academic community

Reliable monolithic integration is a requirement for experimental prototyping

Automated & Open Nanotechnology Platform The Concept

Monolithic Integration drastically reduces parasitics and leads to improved measurement quality and test ranges.

Automated & Open Nanotechnology Platform

Realization of Enhanced Parametric Test

The aim of this project is to put part of the test apparatus on a silicon chip, which will be used as the carrier wafer for new nano device fabrication. Drastically reduced parasitics can lead to improved measurement quality and test ranges.

Overview of Cryogenic Test Structures

OpenFASOC is Evolving New tools and Python-based APIs

https://github.com/idea-fasoc/OpenFASOC

OpenFASOC is Evolving New tools and Python-based APIs

https://github.com/idea-fasoc/OpenFASOC

Interleaved Placement in OpenROAD

Fully Automated Interleaved Ring-Oscillator VCO, with custom placement scripts

be integrated within OpenROAD

https://github.com/idea-fasoc/OpenFASOC

OpenFASOC is Evolving New tools and Python-based APIs

Automated custom structures GDSfactory

MIM Cap Generation using Gdsfactory

GDSFACTORY Array creation routine

Example - Array of Flying MiM caps + Custom Padring

GDSFACTORY Pad-ring place & route routine

MIM Cap Generation using Gdsfactory

- Computes the grid and places capacitor on grid
- Generates connecting metals (with minimum metal spacing)
- Replicates and connects the structures to pads

OpenFASOC is Evolving New tools and Python-based APIs

OpenFASOC - latest

OpenFASOC is Evolving New tools and Python-based APIs

https://github.com/idea-fasoc/OpenFASOC

Final GDS

Resultant Test Die MPW-5

Major Highlights!

- Over 1400 Pads
- 400+ Transistor Structures
- 30 Capacitor Test Structures
- 24 Ring Oscillators
- 18 line and via chain modules
- 7 Diode Test Structures

https://github.com/msaligane/openfasoc_cryo_caravel

4 Tapeouts Already! Final Tapeout Loading...

55

Lowering Barrier to Chip Design

• Enabling Open Collaboration and other Research communities

Performance / Complexity Tradeoff

• FASoC augments digital flow with APR tool placement/routing constraints and minimizes the (performance loss * complexity)

Generator with a Higher Control/Precision

- Addresses porting Aux-cells to new PDK
- Programmatic layout provide fine control with automation

Auto-Generated Comparator Cell

Generator with a Higher Control/Precision

- Object oriented code provides flexibility
- PDK -> py class
- Generators -> py function
- User codes hardware by importing py packages

Integration with GDSfactory & OpenROAD

On-Going Projects & Contributions

NIST Nanofabrication Accelerator

- → 1st Open Nanotechnology Platform
- → Cryogenic Enablement & Design
- Low-Power IC Design → *Rapid* Prototyping for Wearables Hardware Security → 1st Open Root of Trust SoC

Control Electronics for Quantum Computers

Inverters, ring oscillators

Analog

 Voltage reference, Low Noise Amplifiers

https://phys.org/news/2020-08-google-largest-chemical-simulation-quantum.html; https://www.cnet.com/news/google-quantum-supremacy-only-first-taste-of-

computing-revolution, Amundson, J.; Sexton-Kennedy, E. J. E. W. C., Quantum Computing. 2019

Digital Control

DAC

OSC

Control

ASIC/FPGA

Quantum processor

Requirement of Low Operating Power

Source: Brian Hoskins, NIST

Open Cryogenic CMOS

Time + Temperature dependent characterization

Cryogenic Models and Data of Open Sky130

Raw Data

Fit Models

Heat sink Heater Temp. probe

ICEBERAN ENICEBERAN ENICEBERAN EN Robatsdem Bohatsdem Bohatsdem

Automated PMU for Low-K Operation

Measurement Results

Cryogenic Test Setup

Experiments have shown constant behavior across a wide temperature range, down to cryogenic temperatures.

Robust against Temperature Variation

Power Efficiency & Output Voltage Versus Load Current, Clock Freq., and Temperature Emulated Closed-Loop Response At Maximum-Power Tracking