

Calista Redmond CEO, RISC-V International

November 2022

Open standards and collaboration are strategic to hardware and software across industries and geographies.

The definition of open computing is **RISC-V**

RISC-V is the most prolific and open Instruction Set Architecture in history

- RISC-V is inevitable
- RISC-V enables the best processors
- RISC-V is rapidly building the strongest ecosystem

RISC-V is inevitable

RISC-V Mission: RISC-V is the industry standard ISA across computing

>10 Billion RISC-V cores already shipped.

- Innovation and adoption moving rapidly across all domains
- Demand at every performance level (low to ludicrous)
- Shared investment is driving the fastest growing ecosystem

Leverage a community ISA spec development model

Current ISA Business Models

Business Model	Chips?	Architecture License	Commercial Core IP	Add Own Instructions	Open-Source Core IP
Microprocessor	Yes, two vendors	Νο	Yes, one vendor	Νο	Νο
Proprietary ISA	Yes, many vendors	Yes, <i>expensive</i> and restricted	Yes, one vendor	No , (Mostly)	Νο
RISC-V Open standard ISA	Yes, many vendors	Yes, ISA is an open standard	Yes, many vendors	Yes	Yes, many available

RISC-V enables design freedom

Accelerated shared investment in RISC-V

- Numerous roadmaps declared across community incl SiFive, MIPS, Alibaba,....
- \$1B investment by Intel.
- Billions in government investment around the world
- >\$2B in reported Venture Capital investment in start-ups
- \$ Billions more in collective RISC-V community investment

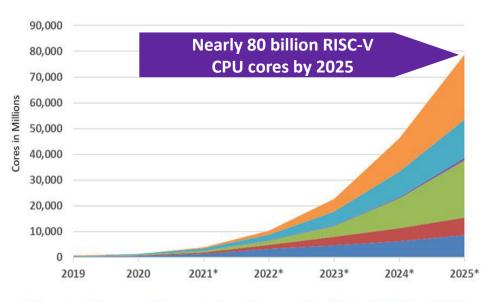
intel.

Intel Creates \$1B Innovation Fund To Grow RISC-V Market (And Attract New Foundry Customers) ... Joins RISC-V Board

February 7, 2022

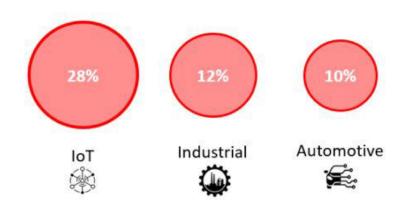
EU <u>announced a new European Chips Act of €15 billion</u> This adds to €30 billion of current public investments

February 8 2022



India Ministry for Electronics & Information Technology launched Digital India RISC-V (DIR-V) program for commercial SHAKTI & VEGA silicon.

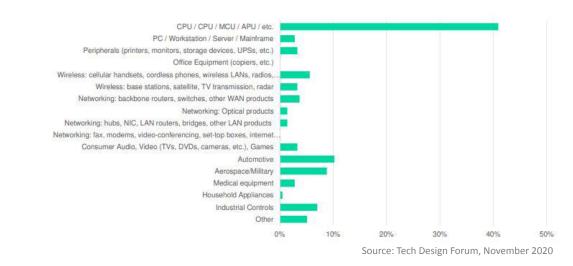
April 27, 2022



RISC-V CPU core market grows 114.9% CAGR, capturing >14% of all CPU cores by 2025

Computer Consumer Communications Transportation Industrial Other RISC-V

RISC-V Penetration Rate by 2025



"The rise of RISC-V cannot be ignored... RISC-V will shake up the \$8.6 Billion semiconductor IP market." -- William Li, Counterpoint Research

Nearly a quarter of designs already incorporate RISC-V

Projects Incorporating RISC-V by Market Segment

23% of ASIC and FPGA projects incorporated RISC-V in at least one processor in a 2020 study.

"Deloitte Global predicts that

the market for RISC-V processing cores will double in 2022 from what it was in 2021, and that it will double again in 2023,

as the served addressable market available for RISC-V processing cores continues to expand."

December 2021

RISC-V enables the best processors

RISC-V enables profound innovation from low end to high end applications

Inherent and sustainable performance and efficiency advantage, Extensions designed simply, for easy implementation. Modular build from a clean base ISA does not carry legacy baggage.

Design flexibility and freedom afford increased innovation potential across multiple variables.

Supported by massive community, including major EDA tools as well as optimizing hardware and software co-design to provide most efficient designs scalable to the full spectrum of applications.

- Disruptive **Technology** – Barriers Proprietary

Standard

Complexity

Controlled by single entity Limited innovation

1500+ base instructions Incremental ISA

Design freedom

Complex and limited, deep investment

RISC-V

Open Hardware + Software Standard driven by hardware and software community

Modular + Scalable

47 base instructions, No legacy complexity

Innovation and Design freedom

Extensible design on frozen base, collective investment

Opportunity

Diversity of solutions

Collective Investment

Competition

Proprietary

Single vendor controlled

All Software work benefits single vendor

Vendor lock in, forced to accept next gen solution

RISC-V

Massive choice Competition brings best solutions

Shared Investment

Software investment benefits all

Domain Specific Targeted solution for each market

Unconstrained **Opportunity**

Inherent and sustainable performance and efficiency advantage

- Extensions designed simply, for easy implementation.
- Clean base ISA does not carry legacy baggage.
- Modular design allows implementers to include only appropriate extensions for their solution.
- Reserved encoding space for alternative extensions without disrupting the base ISA / requiring a new ISA

Open interfaces are accepted practice

Field	Proprietary predecessor	Open Standard	Open Implementation	Commercial implementation on open standard
Networking	Now obsolete	Ethernet, TCP/IP	Many	Cisco, Juniper
OS	Windows	Posix	Linux, FreeBSD	Red Hat, Canonical, Suse, AIX, Zephyr
Compilers	Intel icc, ARMcc, Xcode	С	gcc, LLVM	Greenhills, IAR
Databases	Oracle 12C, DB2	SQL	MySQL, PostgresSQL	Oracle, SQLServer, DB2
Graphics	DirectX	OpenGL	Mesa3D	NVIDIA, AMD, Intel
ISA	x86, ARM, IBM360	RISC-V	LowRISC, other community led	Numerous RISC-V implementations

Successful open standards, enabling multiple implementations

RISC-V Innovation Roadmap Al Socs, Application

Test Chips Software tests Linux port	Proof of Concept SoCs Minion processors for power management & communications Bare metal software	loT SoCs Microcontrollers RTOS, Firmware Development tools Technical Steering HPC SIG, GlobalPlat partnership	Committee,	processors, Linux Drivers, Al Compilers SIGS : Security Response, Al, Graphics, Android, Embedded, Datacenter/Cloud, Blockchain, Simulators, Managed Runtimes, Android, Functional Safety Programs : Dev Board Seed, Development Partners, RISC-V Labs	SIGS: Vector, Perf Modeling, Perf A Computing, Control Flow Integrity, Microarchitecture Side Channel, Q Error Handling, Automotive, Comr Vector Security specs; RISC-V Security M Platform specs: Platforms, SEE, S ABI, Discovery,Watchdog, ACPI, UE SOC specs: E-Trace, Nexus, IOMM	, Memory Protection, OS, E2E Data Integrity, nunications, Floating Point, odel, AP-TEE, IOPMP BI, EFI
2010-2016	2018	2019	2020	2021	2022	2023 →
ISA Definition RISC-V Foundation	RV32	RV32I and RV64I Base instructions: Integer, float,double, quad, atomic, and compressed instructions Priv modes, Interrupts, exceptions, memory model, protection, and virtual memory	Architecture Compatibility Framework Trace	Vector Crypto Scalar Bitmanip Hypervisor ePMP Cache Mgt Virtual Memory Zfh Zfinx Zihintpause	Profiles Packed SIMD Advanced Interrupts Java: ptr masking, I/D synch RV32E & RV64E Bfloat16 Vector Half-Precision Floating Poir Code Size Crypto Vector Fast Interrupts SMPU Zmmul Ztso	Matrix Ops Crypto Gost nt ISA Extensions
					Zihintntl	

In performance benchmarks, RISC-V is gaining ground really fast

- <u>Researchers Benchmark Experimental RISC-V Supercomputer</u>
- XuanTie C906 Tops MLPerf Tiny v0.7 Benchmark
- <u>MIPS Claims "Best-In-Class Performance" With New RISC-V eVocore CPUs</u>
- Andes Technology RISC-V Processors Reveal Outstanding Performance and Efficiency in MLPerf Tiny
- <u>RISC-V Powered Mango Pi Takes on Raspberry Pi Zero at Its Own Game</u>
- <u>SiFive RISC-V Sees Some Performance Improvements On Ubuntu 22.04</u>
- <u>Greenwaves top results in MLPerf Tiny for hardware acceleration</u>

RISC-V°

Processors in development slated to overtake current proprietary alternatives.

RISC-V is rapidly building the strongest ecosystem

RISC-V instrumented with software top of mind

- **Open standards enable software** choice. Applications keen to run on RISC-V.
- **Toolchain and OS support** required for Extension ratification
- **Single hypervisor standard** to simplify and unify application support
- Thousands of software developers bringing workloads to RISC-V
- **Strategic imperative and investment** by commercial sector and geographies
- Modern design approaches leveraged for fewer instructions

Powerful forces fuel a unified RISC-V approach

Users: No one wants a repeat of vendor lock-in, avoid fragmentation of legacy ISAs.

Software: No one, not even a nation, can afford their own software stack. Upstream open-source projects generally only accept frozen/ratified RISC-V standards.

Fragmented Alternatives: Other architectures that enable an architecture license then do not have consistency on those implementations. In addition, there are multiple ISAs from other architectures such as A ISA, M ISA, as well as numerous versions.

- Trust zone and secure boot operate differently on different payment processing systems (credit card, Samsung/Google/Apple pay) for example depending on the manufacturer rather than a uniform approach.
- In IoT, the platform security architecture defines certification mechanisms that are implemented by third parties. Paypal is an example where the security mechanism moved to the cloud rather than the device.

RISC-V

Fragmentation: Same thing done different ways

Managing Diversity for RISC-V

Raw extensions

- Base + standard extensions + custom extensions
- Full suite of options available for experimentation and specialized uses
- Massive combinatorial space of options

ISA Profiles

- Packages of ISA extensions for given domain
- Initial set: RVI20 (basic), RVA20/22/23 (application processor)
- Factor out common ISA combinations for use in platform standards

Platform standards

- Hardware/software standards for platforms (much more than just ISA)
- Initial focus OS-A platform for Unix-like OS (includes IOMMU, AIA, etc)

Diversity: Solving different problems

RISC-V Technical Programs

RISC-V Developer Boards

Available to spur innovation, provide hands-on education, and engage early adopters to test and develop.

Recognizes the investment and dedication of organizations making significant technical contributions to RISC-V.

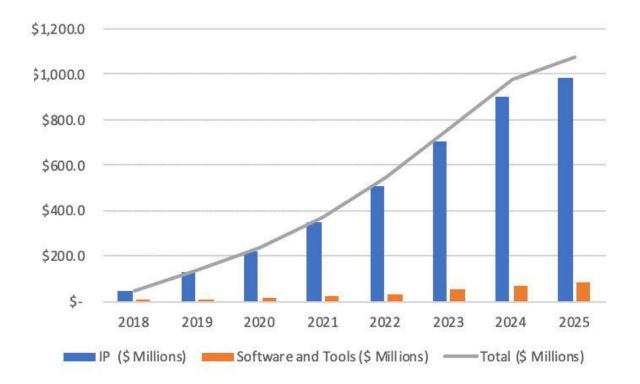
RISC-V Lab

Institutions that host a lab with RISC-V hardware for CI/testing and general availability sandboxing.

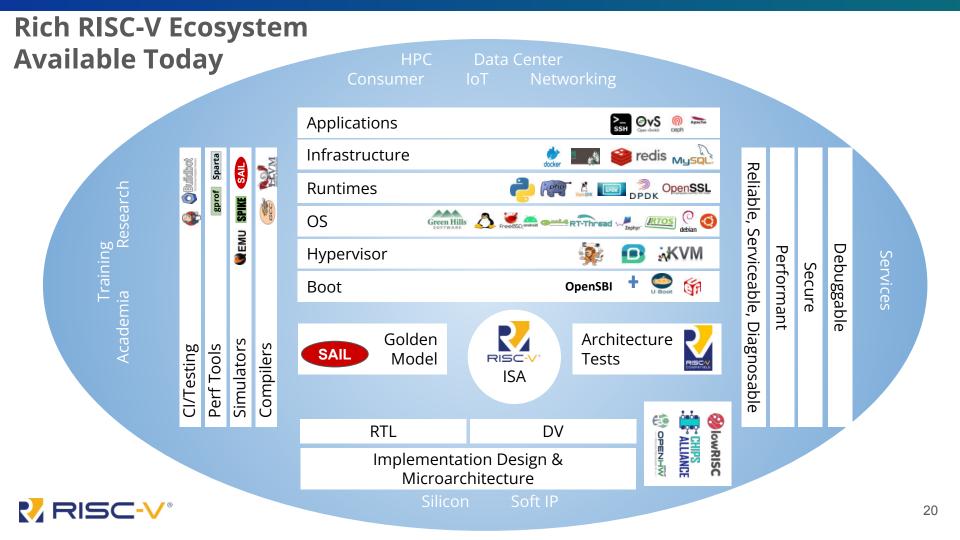
RISC-V Compatible Architectural Tests created to help ensure that software written will run on implementations that comply with that profile. Branding available for compatibility.

RISC-V Platform

A common, reusable runtime environment that operating systems and applications can target to improve portability and reuse. Provides interoperability assurance.


RISC-V Profiles

Refers to a base ISA and one or more extensions that are specified as a group so that applications can be compiled once, run on different implementations, and get the same results.



RISC-V IP, SW, and Tools build momentum

The total market for RISC-V IP and Software is expected to grow to \$1.07 billion by 2025 at a CAGR of 54.1%

Investment and traction accelerate in 2022

PULP Platform HEROv2: Full-Stack Open-Source Research FPGA Platform for Heterogeneous Computing

HEROv2 for heterogeneous computing based on clusters of 32-bit RISC-V cores and an application-class 64-bit ARMv8 or RV64 host processor for sharing data between 64-bit hosts and 32-bit accelerators.

January 16, 2022

intel.

Intel Corporation Makes Deep Investment in RISC-V Community to Accelerate Innovation in Open Computing

RISC-V welcomes Intel to the Board of Directors to collaborate on RISC-V IP and contribute to RISC-V software development

Intel Creates \$1B Innovation Fund To Grow RISC-V Market (And Attract New Foundry Customers)

February 7, 2022

Automotive RISC-V processor functional design verification

NSITEXE selected ImperasDV for RISC-V design verification, expanding Imperas' simulation technology, models, verification IP and tools by NSITEXE for next gen 64bit RISC-V vector accelerators in AI automotive with verification for level needed to attain ISO 26262 ASIL D.

The European Commission <u>announced a</u> <u>new European Chips Act of €15 billion in</u> <u>additional public and private investments</u> <u>until 2030</u>. This adds to €30 billion of public investments previously earmarked.

February 8 2022

intel.

Intel to spend €17bn on chip mega-factory in Germany... expands manufacturing in Ireland, plus R&D and packaging across Europe

March 15, 2022

Hot off the press 2022!

...

SiFive @SiFive

We're thrilled to be featured on the @Nasdag video wall this morning to celebrate our historic moment: a \$2.5B valuation from our Series F round! #RISCV **#NoLimits**

10:02 am · 16 Mar 2022 · HubSpot

Clockwork Pi announced availability of DevTerm R-01, the first 64-bit RISC-V portable computer with retro styling and modern computing power.

March 15, 2022

The government of India Ministry for Electronics & Information Technology launched Digital India RISC-V (DIR-V) program with aggressive milestones for commercial silicon of SHAKTI & VEGA

April 27, 2022

MIPS

MIPS Pivots to RISC-V with Best-In-Class Performance and Scalability

eVocore P8700 high performance for deep pipeline with multi-issue Out-of-Order (OOO) execution and multi-threading. Scales to 64 clusters, 512 cores and 1.024 harts/threads. Available in Q4 2022.

eVocore 18500 – power efficiency: in-order multiprocessing with best-in-class power efficiency for SoC applications.

RISC-V

May 10, 2022

Momentum headlines in 2022

Spain Approves €12.25b Semiconductor Investment Plan

President Sanchez met CEOs of MicronTech Intel & Qualcomm at WEF22 on Spain's €12 billion strategy in global semiconductor industry with RISC-V lab at BSC, and Investment in Spain

May 25, 2022

Università di Bologna, CINECA and E4 "Monte Cimone" Cluster, a **RISC-V** platform using SiFive **RISC-V SoCs demonstrated** remarkable software and hardware readiness and maturity - first gen RISC-V HPC machines June 11, 2022 coming soon.

Microchip RISC-V based PolarFire FPGAs enter mass production: Microchip is writing a new chapter in the history of RISC-V with the availability of production-gualified SoC PolarFire devices. lune 8, 2022

Accelerating ML Recommendation With Over 1,000 RISC-V/Tensor Processors on Esperanto's ET-SoC-1 Chip lune 17, 2022

C-J Alibaba Cloud

XuanTie C906 Tops MLPerf Tiny v0.7 Benchmark June 13, 2022

Antmicro Renode 1.13 for improved machine learning and pre-silicon development lune 17, 2022

Imagination

Imagination Technologies announces RTXM-2200 real-time embedded RISC-V CPU, a highly scalable 32-bit embedded solution with a flexible design for networking solutions, packet management, storage controllers, and sensor management for AI cameras and smart metering. lune 21, 2022

- **Esperanto** 1,000-Core RISC-V AI accelerator.
- Alibaba RISC-V Xuantie processors with 4 open cloud and edge processors
- **Imagination** RISC-V CPU family, for discrete and heterogeneous computing
- **Seagate** hard disk drive controller with high-performance RISC-V CPU.
- **Ventana** performance chiplet approach to data center SoC design
- **Intel** Nios processor based on RISC-V, designed for performance.

RISC-V CPU core market will grow 115% CAGR, capturing >14% of all CPU cores by 2025

– Semico Research, December 2021

Communication AI SoC RISC-V designs will grow 21.2% CAGR from 2019-27 - Semico Research, December 2021

- Andes RISC-V processor adopted by SK Telecom for AI products.
- Alibaba supporting Android 12 on their 64-bit RISC-V core emulated in QEMU
- Sipeed RISC-V chip runs Android 10, RV64 phone coming next
- Alibaba ported TensorFlow Lite for AI image, audio, and optical in smart devices.
- Google Pixel 6 Titan M2 RISC-V processor, with extra speed and memory, more resilient to advanced attacks.

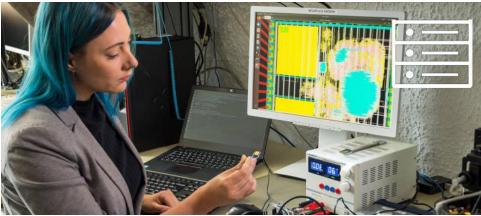
- **Huawei** Hi3861 RISC-V board for Harmony OS developers for IoT
- Zepp Health / Huami wearable manufacturer OS supporting RISC-V Reference Models for RISC-V P extension
- **GreenWaves** ultra-low power GAP9 hearables platform for scene-aware and neural network-based noise reduction.
- **RIOS Lab** announced PicoRio, an affordable RISC-V small-board computer.
- **SiFive** world's fastest development board for RISC-V Personal Computers.

RISC-V will command 28% of the IoT market by 2025

- Counterpoint Technology Market Research, September 2021

RISC-V-based AI SoCs will grow **73.6% CAGR to 25B units and \$291B in revenue by 2027** – Semico Research, December 2021

- Alibaba Cloud tops MLPerf Tiny v0.7 Benchmark with its IOT processor
- **Esperanto** accelerating ML Recommendation With Over 1,000 RISC-V/Tensor Processors on ET-SoC-1 Chip
- **StarFive** released the world's first RISC-V AI visual processing platform
- Andes released superscalar multicore and L2 cache controller processors.
- **NVIDIA CUDA** support on Vortex RISC-V GPGPU enables scaling from 1-core to 32-core GPU based on RV32IMF ISA



- **Fraunhofer** ported Tensorflow lite to their RISC-V processor core for Edge AI applications incl sensor data evaluation, gesture control, or vibration analysis.
- **Seeed Studio**'s new Sipeed MAIX, a RISC-V 64 AI board for Edge Computing makes it possible to embed AI to any IoT device.
- **Micro Magic** announced an incredibly fast 64-bit RISC-V core achieving 5GHz and 13,000 CoreMarks at 1.1V.
- Western Digital SweRV Core enables spectrum of compute at the edge
- **Microchip** released the first SoC FPGA development kit based on the RISC-V ISA.

- **E4** Monte Cimone Cluster along with DEI-UNIBO contributing to architecture, software, and integration.
- **European Processor Initiative** RISC-V accelerator with first chip Sep 2021
- **Technical University of Munich** (TUM) quantum cryptography chip for quantum computing security demands
- **Tactical Computing Labs** HPC-centric software test suite for GCC and LLVM
- **Cortus** is developing a high-performance RISC-V Out-of-Order processor core for the European eProcessor project.
- **De-RISC** HW-SW platform for multi-core RISC-V SoC for safety critical aerospace

NRISC-V®

High Performance Computing

Johanna Baehr of TUM heads a team that has hidden four hardware Trojans on this chip - malicious functions that are integrated directly into the circuits.

RISC-V will capture 10% of the Automotive market by 2025 - Counterpoint, September 2021

SiFive high-end applications and real-time processors for leading performance, with lowest area and power consumption in vehicles for safety, security, and performance

Andes launched safety-enhanced 32bit RISC-V CPU IP, first to be fully compliant with ISO 26262 functional safety.

IAR RISC-V Embedded Workbench for **SiFive** infotainment, connectivity, and ADAS products.

2020 RISC-V automotive opportunity 4M cores; growing to 150M cores in 2022 and 2.9B cores by 2025. – Deloitte, December 2021

RISC-V Automotive Value Multicore SoC revenue to be \$5.7B in 2022. Advanced RISC-V AI SoCs for High-End Passenger Cars to Reach \$819M by 2027 - Semico Research, June 2022 **MobileEye** EyeQ Ultra vision advanced driver assist systems chips for 176 trillion ops per second with 12 RISC-V CPU cores.

Andes ISO 26262 Functional Safety ASIL D Dev Process Certification for RISC-V embedded safety with Andes processors

Renesas and SiFive partner on next-gen, high-end RISC-V automotive applications. SiFive licenses RISC-V core IP to Renesas.

Imagination Technologies GPU linked by a RISC-V core for ASIL-B level designs with ISO 26262 safety critical certification.

Green Hills support RISC-V RTOS targeting ISO-26262 ASIL D applications

MIPS RISC-V eVocore processors for high-performance, real-time compute in datacenter and automotive

Fraunhofer RISC-V Processor cores for functional safety and cyber security, and engaging in GaNext program.

IAR Systems functional safety of Embedded Workbench sw tool chain for **NSI-TEXE** RISC-V core.

NSI-TEXE 64bit RISC-V vector accelerators with **ImperasDV** design verification for automotive AI with ISO 26262 ASIL D.

Europe GaNext power converters with GaN power processors with better efficiency and compactness for EV chargers.

Kneron RISC-V based AI edge chip for Automotive

Dedicated Community

33

Japan RISC-V Members

Cyber Physical Security Research Center of AIST **DTS INSIGHT Corporation** Hitachi, Ltd. NSITEXE OTSL, Inc PEZY Computing, K.K. **Renesas Electronics Corporation** Software Hardware & Consulting Sony Semiconductor Solutions Corporation The University of Electro-Communications The University of Tokyo UNO Laboratories, Ltd.

RISC-V collaboration in apan

"RISC-V continues to gain momentum around the world, and we plan to leverage SiFive's portfolio of automotive RISC-V products in our future automotive SoC solutions to meet the exacting demands of these global customers."

- Takeshi Kataoka, Senior VP and GM of Automotive Solution Business Unit at Renesas

More than 3,100 RISC-V Members across 70 Countries

3200	111 Chip	3 Systems
2800	SoC, IP, FPGA	ODM, OEM
2400	3 1/0	14 Industry
2000	Memory, network, storage	Cloud, mobile, HPC, ML, automotive
1600		and the second second
1200	19 Services	139 Research
10001	Fab, design services	Universities, Labs, other alliances
800		2k+ Individuals
400	56 Software	
0	Dev tools, firmware, OS	RISC-V engineers and advocates
Q3 Q4 Q1 Q2 2015 2015 2016 2016	Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 G 5 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 20	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 019 2019 2019 2019 2020 2020 2020 2020 2
Oct 2022		

RISC-V membership rapid growth of 134% in 2021

Technical Deliverables

Technical **governance** Build technical deliverables Guide strategic technical Work groups

Profiles & Platforms & Architecture Compatibility Tests (ACT) & Platform Compatibility Tests (PCT)

Marketing

Create brand value around RISC-V **Amplify** member news, content, and success with press & analysts **Original content** programs RISC-V, industry, and regional Events

Learning & Talent

Multi-level online learning Connecting **universities** with labs, tests, and curricula **RISC-V Training Partners** Jobs and internships

Advocacy + Alliances

Geo and industry **alliances Local** developer groups and events

RISC-V Exchange

Online directory of providers, products, services, and learning resources

Technical developer forums

RISC-V delivers incredible member support

Benefits engaging in **RISC-V**

Accelerate technical traction and insight

- Contribute technical priorities, approaches, and code
- Gain strategic and technical advantage
- Increase visibility, leadership, and market insight
- Fill and increase engineering skills, retain and attract talent
- Build **innovation partner** network and customer pipeline
- Deepen, engage, and lead in local and industry developer network
- Showcase RISC-V products, services, training, and resources

RISC-V is a community of passionate, dedicated, and invested stakeholders

As individuals As companies As universities As public institutions and non-profits As nations

As one Global, connected movement

Build RISC-V into your company strategy, and your personal mission

Thank You

Scan for Calista Contact info

risc-v-international calistaredmond

Membership Options

Premier Member Benefits

- Board seat and Technical Steering Committee seat included at \$250k level
- Technical Steering Committee seat included at \$100k level
- Board level includes seat on RISC-V Legal Committee
- Eligible to lead workgroup and/or committee
- Use of RISC-V Trademark for commercialization
- Member logo / name listing on RISC-V website, alphabetical with Premier members
- Solution / Product listing highlighted on RISC-V Exchange, noted with member level
- 4 case studies a year
- 2 blogs per month
- 2 social media spotlights per month
- Spotlight member profile
- Event sponsorship discount

Premier Requirements

- Membership open to any type of legal entity
- \$250k Annual membership fee that includes Board seat and TSC seat
- \$100k Annual membership fee that includes TSC seat

Strategic Member Benefits

- 3 Board reps elected for the Strategic tier, including Premier members that do not otherwise have a board seat
- Eligible to lead workgroup and/or committee
- Use of RISC-V Trademark for commercialization
- Member logo / name listing on RISC-V website, alphabetical with Strategic members
- Solution / Product listing highlighted on the RISC-V Exchange, noted with member level
- 1 case study a year
- 1 blog per month
- 1 social media spotlight per month
- Event sponsorship discount

Community Member Benefits

- Two Board representatives
- 1 Community Board representative, elected
- 1 Individual Board representative, elected
- Member logo / name listing on RISC-V website, by member level
- 1 case study a year
- 1 blog per quarter
- 1 social media spotlight per quarter
- Event sponsorship discount

Strategic Member Requirements

- Membership open to any type of legal entity
- · Annual membership fee based on employee size
 - 5,000+ employees: \$35k
 - 500-5,000 employees: \$15k
 - <500 employees: \$5k
 - <10 employees & company <2 yrs old: \$2k

Community Requirements

- Membership open to
 - academic institutions,
 - non-profits,
 - individuals not representing a legal entity
- No annual membership fee

RISC-V Learn

Learning RISC-V is a challenging, highly rewarding activity. There are many resources available to help you on this technical journey, and we welcome new additions to these resources – please contact us at <u>info@riscv.org</u> with any questions or comments.

Learn Online

Online learning at beginner, intermediate, and advanced levels to increase engineering expertise and career opportunity on RISC-V across the industry.

Training Partners

Provide RISC-V training in a professional setting to extend the breadth and reach of RISC-V knowledge

University Resources

Universities that support RISC-V curriculum and other programing as well as books and other learning resources.

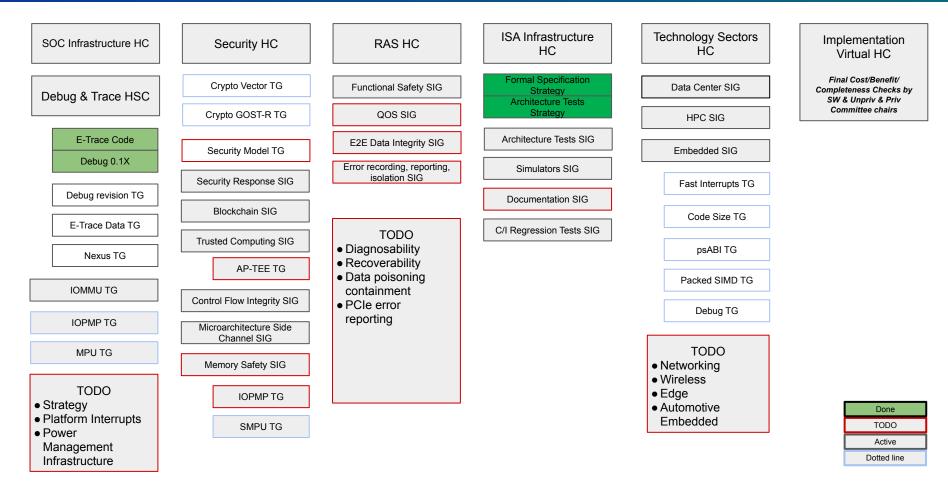
Profiles and Platforms

ISA Profiles

- A set of **extensions** that are compatible
- **Extension types**: required, optional, unsupported, or incompatible
- Two profile types:
 - **Application (RVA[yy]):** Linux-class and other embedded designs with more sophisticated ISA needs
 - Microcontroller (RVM[yy]): Cost-sensitive application-optimized embedded designs running bare-metal or simple RTOS environments
- Running the same sequence of instruction between implementations are **RISC-V** compatible

System Platforms

- A set of **features** that are compatible
- Includes ISA Profiles, software and hardware system components, standardized hardware/software interfaces, etc
- **Two Platform types**: OS/A and M (naming TBD)
- Ability to move an executable from one implementation to another and get the same results are **RISC-V Compatible**


Technical Organization

Board of Directors (BoD)					
	Technical Steering Committee (TSC) Architecture Profiles		CTO, Staff	CTO, Staff	
		Unpriv IC	Priv IC		
		Architectu Architecture Review (IC			
Industry Verticals SIG	Software HC (Platforms, Toolchains, Runtimes)	IMAFDQC			
	Security HC	Zb[abcs] Memory Model	<u>еРМР</u> 1.12 (Priv)		
	RAS HC	Crypto Scalar Zfinx	Н		
	Technology Sector HC	Vector SIG			
	Technology Sector HC OZI SoC Infra. HC (Trace & Debug)	FP SIG			
ω	Implementation HC				
Consumer Automotive Data Center Finance Communications Oil & Gas Oil & Gas Defense/MilAero	ISA Infrastructure HC	V phase 2 Crypto GOST-R TG			
ume Cent Cent Gas Gas		Packed SIMD TG			
Consumer Automotive Data Center Finance Communica Oil & Gas Defense/Mi		J TG			
Consum Automo Data Cei Finance Commui Oil & Ga Defense		Code Size TG	AIA TG		
		Crypto Vector TG	SMPU TG	Done	
_		Alt FP TG FT: Zmmul, Zihintntl,	FastInt TG	TODO	
NRISC-V°		WRF	CMO 2 TG	Active	

Dotted line

Software Horizontal Committee

AI/ML/NLP/Graphics SIG	Platform HSC (includes platform specs)		Toolchain & Runtimes HSC	
Android SIG	Config TG	Hypervisors SIG	psABI TG	
Perf Modeling SIG	AIA TG	IOPMP TG	Topics TODO:	Code Size TG
Perf Analysis SIG	Topics TODO:	OS-A Platform SIG	Benchmarks Regression test strategy	HPC SIG
IOMMU TG		RVM-CSI Platform TG		
		OS-A SEE TG	 DSP DB & Hadoop et al Performance analysis 	Managed Runtimes SIG
		OS-A PlatformTG	Native code GCC LLVM Optimizer	
	TGs for specs underway	OS-A PCT TG	o Profiler o gdb	
				Done TODO
NRISC-V°				Active Dotted line

RISC-V°