CHIPS Alliance: The Open Source Hardware Roadmap

Michael Gielda, Chair of Outreach, CHIPS Alliance VP Business Development, Antmicro

AGENDA

Who are we?

Today's compute & design challenges

CHIPS Alliance projects

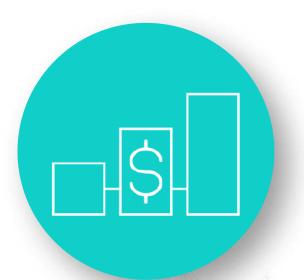
What is CHIPS Alliance?

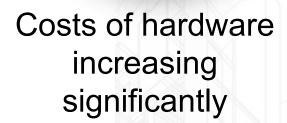
- Organization which develops and hosts:
 - > Open source hardware code (IP cores) -> think open source CPUs, I/O, interconnects, ML
 - > Open source ASIC & FPGA development tools -> design, verification, simulation, workflows
- A barrier-free environment for collaboration:
 - Standards organization framework for collaboration and development
 - Under governance of Linux Foundation
 - Legal framework Apache v2 license / OWFa
- Shared resources (\$, code, practices, infrastructure and time) which lower the cost of hardware development

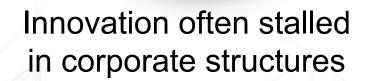
CHIPS Alliance members – companies

CHIPS Alliance members – universities, labs and projects

UCSanDiego Yale University Vale University

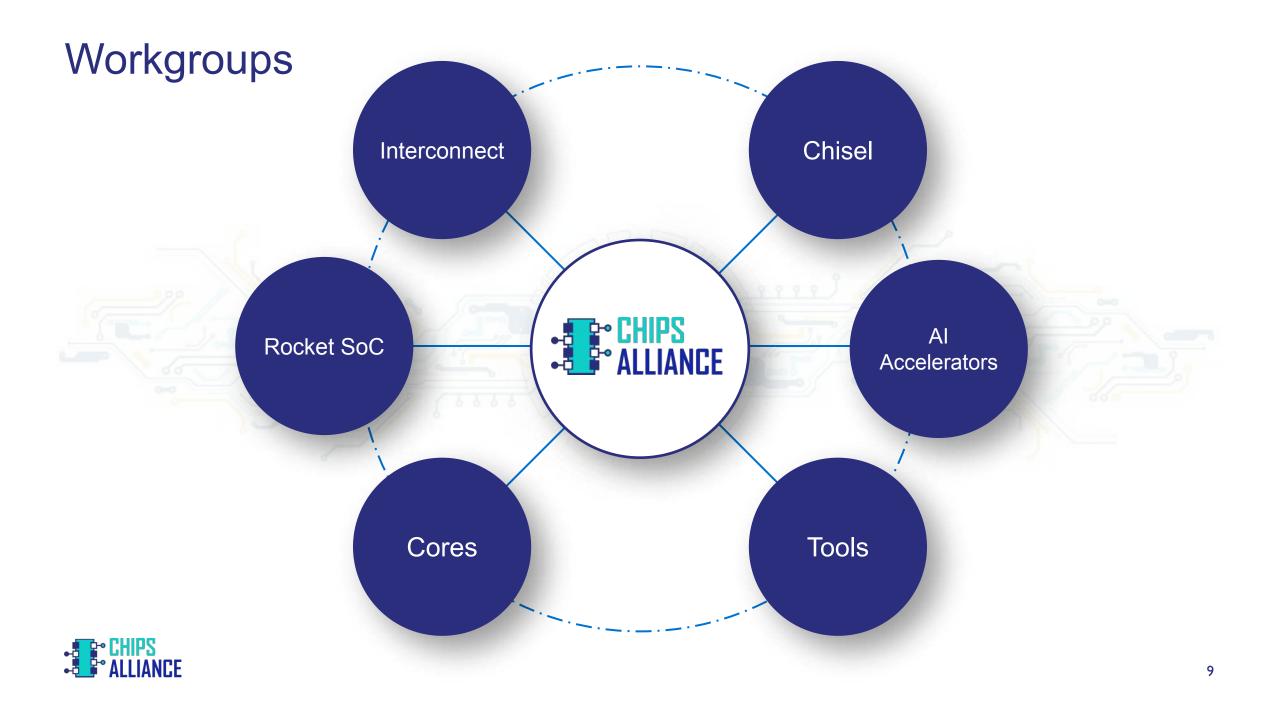






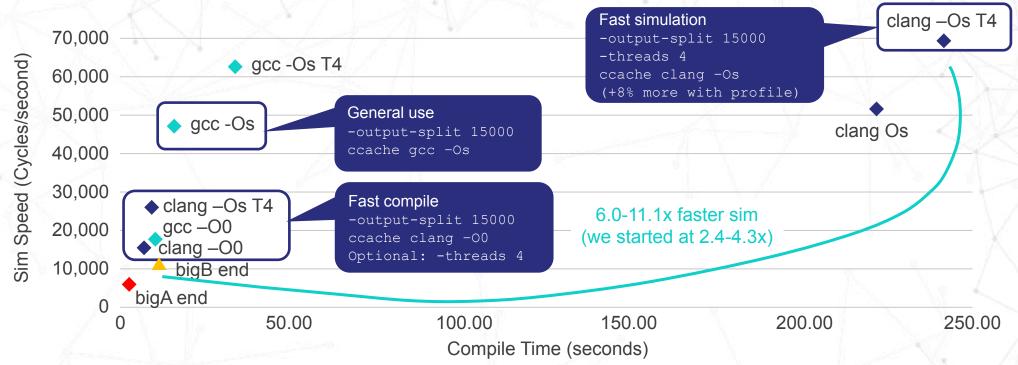
Compute and Design Challenges

Need more purpose-built architectures


CHIPS Alliance Aims to Deliver

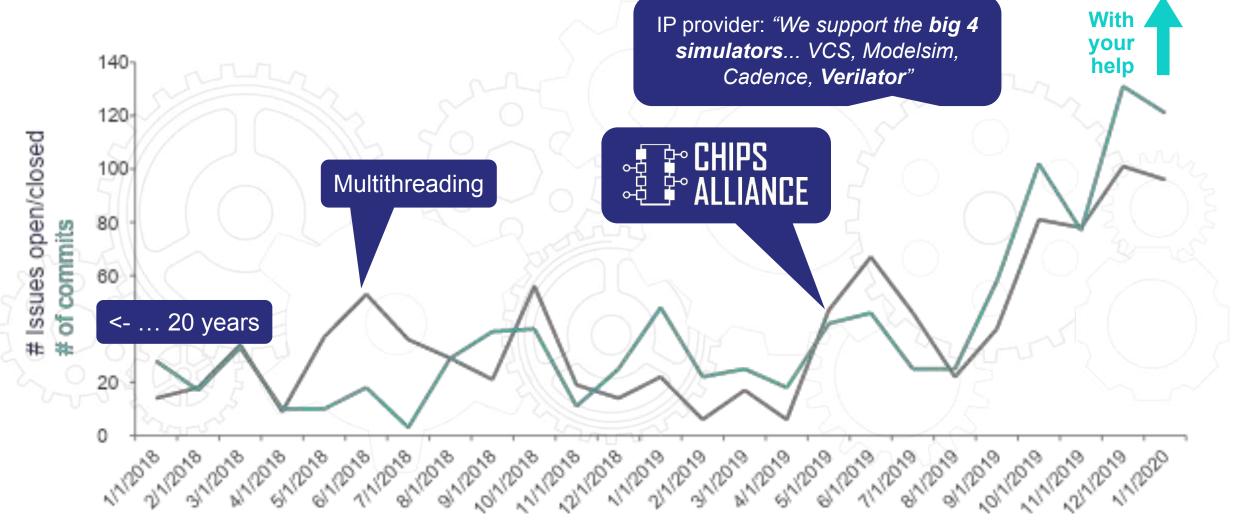
- Lower development costs
 - Leverage common IP CPU cores, Neural network accelerators, Uncore components (PCIe, DDR...), Interconnects
 - Collaboratively develop open source hardware design & development tools and infrastructure enables new level of innovation where design engineers can modify design tools
- Open Source Collaboration in hardware
 - > Allows breakthrough innovation drawing upon broad expertise and diverse experience
 - Enables purpose built solutions think specific accelerators for new AI workloads while keeping alignment / compatibility
- Blue hat business model development and promotion of open source policies

CHIPS Alliance Projects

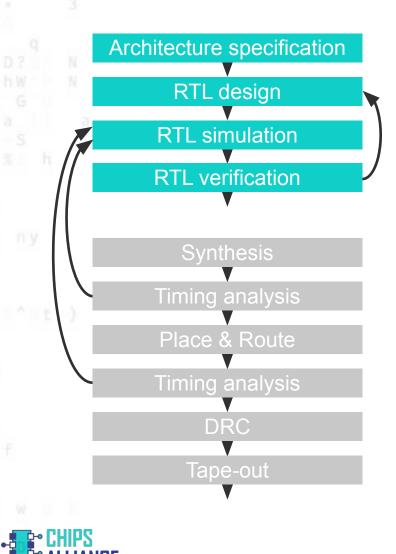


Milestone Achievements in 2020

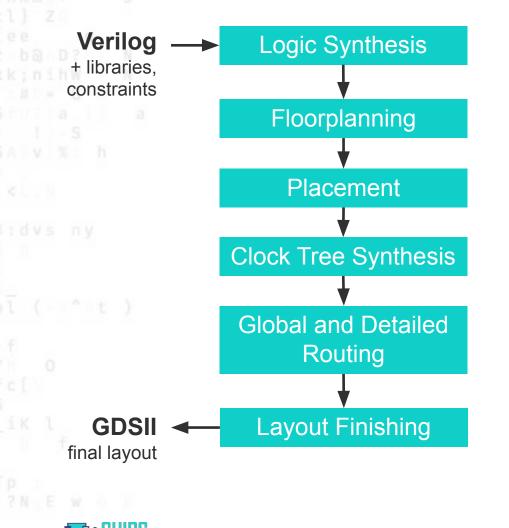
- Started major project on SystemVerilog in Verilator and other FOSS tools
 - > open source synthesis of SystemVerilog cores
 - > fully open source SV linting and formatting flow in CI, testing suite and parsers
- Key new major projects that joined in 2020:
 - > Chisel
 - > OpenROAD
- Released AIB 2.0 chiplets specification
- Delivered new generation of SweRV RISC-V embedded cores (EH2 and EL2):
 - > First open-sourced dual threaded high performance core targeting embedded/realtime
- Successful demonstration of OmniXtend memory centric compute system


Why is Verilator RTL Simulator Interesting?

- It outperforms big three simulator by factor of up to 11x
- It can be easily customized for unique team needs:
 - > Fast compile, faster execution than big three OR slower compile, incredibly faster execution
- High simulation speed implies running firmware or software on top of the simulator



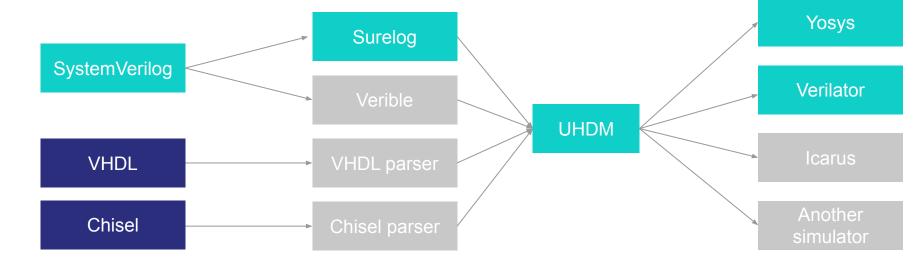
Accelerated Development



Open Source EDA Tools: Long Term (7 Year) Vision

- RTL simulator
- Design verification
- Synthesis:
 - Synthesizing design using device models that came from the foundry
- Timing analysis:
 - Checking if timing at target frequency is closed after synthesis and after place and route
- Place and route:
 - > How do you customize for your own applications, when tools are close-sourced?
 - > Most active area where significant disruption is occurring
 - Using machine learning models to guide place and route, instead of traditional algorithm driven – enables more power efficient and faster designs than expected

OpenROAD: No Humans, 24 hours + Open Source


IDEA will create a no-human-in-the-loop hardware compiler for translating source code to layouts of System-On-Chips, System-In-Packages, and Printed Circuit Boards in less than 24 hours

A. Olofsson, DARPA, ISPD-2018 keynote

- Digital tool flows for chip, package and board
- All tools open-source
- Flow is fully automated
- Seed an ecosystem through CHIPS Alliance
- Bring EDA research closer to industry and designers:
 - Enable critical algorithm innovation by providing functional framework

SystemVerilog in open source tooling

- Collaboration between Google, Western Digital, Antmicro
- <u>Verible</u> SystemVerilog linter/formatter
- <u>Surelog</u> SystemVerilog parser, front-end to UHDM
- <u>Universal Hardware Data Model</u> (UHDM)
 - > An intermediate representation of a SystemVerilog design
 - > Library for connecting front- and back-end of various tools
- CHIPS Alliance expanding <u>UHDM support</u> to Verilator and Yosys
- Work on expanding Verilator for open source verification

SystemVerilog Test Suite

- Test suite for SystemVerilog (including some UVM) support in open source tools
- Aims to pinpoint all the supported and missing SystemVerilog features in various tools.
- Generates report from last passing master build at <u>https://symbiflow.github.io/sv-tests/</u>
- Introduces three types of tests:
 - Testing individual features as per the SystemVerilog standard
 - > Existing third party test suites
 - Selected open source IP cores, such as SweRV, Ibex and others

		icarus 🗍	moore \$
Ariane RISC-V core	ariane	0/1	0/1
Tests imported from Basejump STL	basejump	75/320	<mark>8</mark> 8/320
BlackParrot RISC-V core	black-parrot	0/6	0/6
Lowrisc chip with Ibex core	earlgrey	0/1	0√1
FX68K m68k core	fx68k	0/1	0/1
Tests imported from hdlConvertor	hdlconv	55/306	54/306
Ibex RISC-V core	ibex	0/1	0/1
Tests imported from ivtest	ivtest	1579/1631	405/1631
RSD RISC-V core	rsd	0/1	0/1
Various sanity checks	sanity	1/1	1/1
SCR1 RISC-V core	scr1	0/1	0/1
SweRV RISC-V core	swerv	0/1	0√1
Taiga RISC-V core	taiga	0/1	0/1
Tests imported from utd-SystemVerilog	utd-sv	121/295	15/295
Tests imported from UVM	uvm	3/152	3/152

Open source synthesis of ibex core

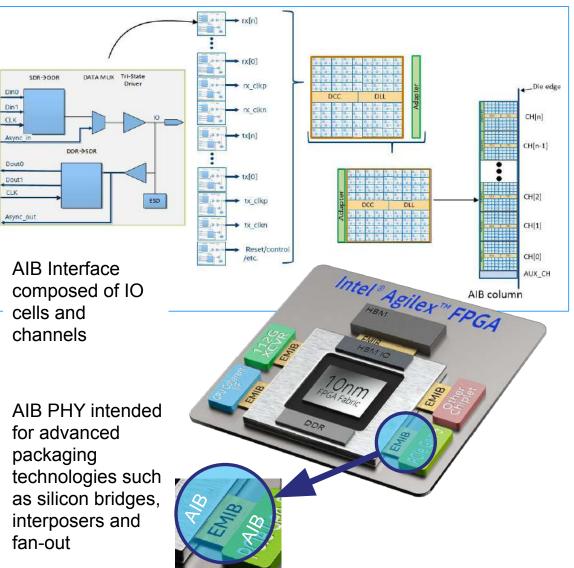
- Verible and Surelog support for <u>ibex</u>, RISC-V 32 bit core written in SystemVerilog
- used in OpenTitan first open source root of trust chip
- IowRISC, Google, Western Digital collaboration
- enabling useful CI workflows and practices, being adopted by other organizations

Advanced Interface Bus (AIB) PHY: Standard Chiplet Interface

AIB: Scalable chiplet (die-to-die) physical interface

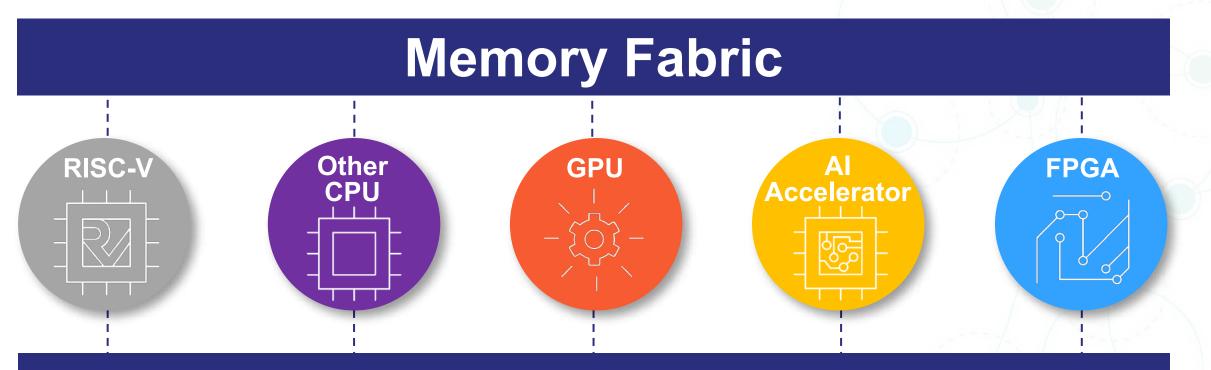
- Optimized for low power, high bandwidth, and ease of porting to new and mature silicon technologies
- > Build protocols like AXI on top of AIB

Open CHIPS Alliance AIB Specification


 Electrical specs, bump array mechanicals, data/ clock/ control signal definitions, reset sequence, JTAG reqts

Open source hardware intended to reduce the cost of implementing a high performance die-to-die interface

> RTL, cell models, testbenches


Delivered AIB 2.0

- > Double I/O density
- > Double data rate
- > Lower I/O voltage for 0.5pJ energy/bit

Cache Coherent Memory Fabric – OmniXtend

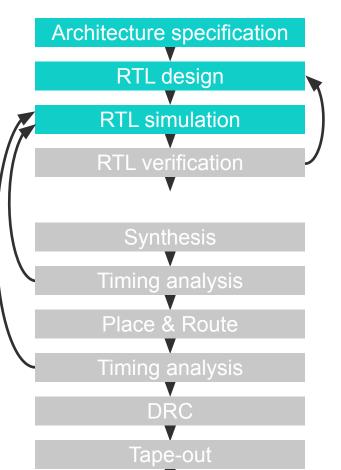
Network Fabric

Memory is the center of the architecture

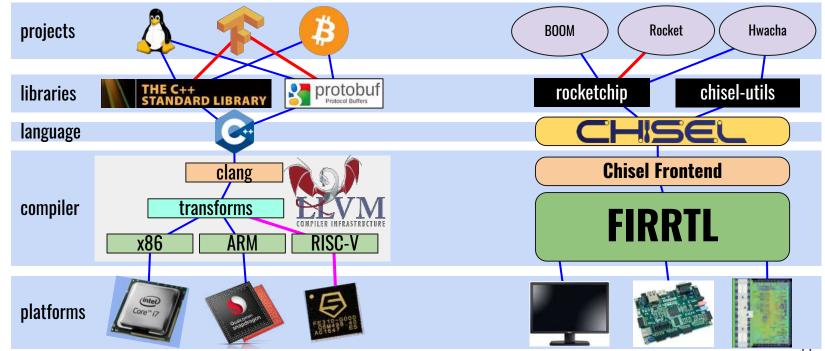


OmniXtend Architecture Overview

RISC-V node	■ 10.11.46.137 - PuTTY — □	× IniXtend Header Format
L2 cache	<pre> act /proc/cpuinfo bart : 1 isa : rv64imafdc mmu : sv39 uarch : sifive,rocket0 hart : 2 isa : rv64imafdc</pre>	Description TileLink transaction ID Ordering domain ID Logarithm of number of bytes in transaction Parameter Operation code, identifies type of message Channel number 0-5 (A-F)
Coherence Manager	<pre>mmu : sv39 uarch : sifive,rocket0 hart : 3 isa : rv64imafdc mmu : sv39 uarch : sifive,rocket0</pre>	3 Ethemet packet and frame structure MAC 802.1Q Ethertype Payload Frame check Interpacke 1 source (optional) length (IEEE 802.3) Payload (32-bit CRC) gap 6 (4 octets) 2 octets d6-1500 4 octets 12 octets
	hart : 4 isa : rv64imafdc mmu : sv39 uarch : sifive,rocket0	64-1522 octets 72-1530 octets
	<pre>hart : 9 isa : rv64imafdc hart : 12 isa : rv64imafdc mmu : sv39 uarch : sifive,rocket0 mmu : sv39 uarch : sifive,rocket0 hart : 10 isa : rv64imafdc # ca /proc/cpuinfo grep hart wc -1 mmu : sv39</pre>	Line access latency (50 MHz uncore)
Packet data	<pre>uarch : sifive,rocket0 hart : 11 isa : rv64imafdc mmu : sv39 uarch : sifive,rocket0</pre>	10
	<pre>hart : 12 isa : rv64imafdc mmu : sv39 uarch : sifive,rocket0</pre>	50 536 ¹³¹ ,072 ² ,144 ² ,288 ⁴ ,575 ⁻¹ ,194 ³ ,305 ⁸ ,6777
• CHIPS • ALLIANCE	# cat /proc/cpuinfo grep hart wc −1 8 # <mark>■</mark>	<pre> test size (bytes) </pre>


SweRVTM Core Roadmap

CPU technology roadmap



Open source EDA tools: Chisel + Chisel tools ecosystem

- RTL design automation:
 - The goal of Chisel is to AVOID RTL design, as much as we avoid assembler when programming computers
 - Programming is done in Scala programming language, and compiled into Verilog (RTL)
- Fully integrated into CHIPS Alliance, biggest success story

Join the Alliance!

- Share resources to lower the cost of hardware development: digital and analog IP
- Collaborate in developing of open source design tools software, share good practices
- Receive high quality, open source CPU/SoC designs and complex IP blocks
- Grow your business in this forward thinking organization

Join us! https://chipsalliance.org/join/

