

Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture

TEE Hardware for RISC-V Implementation

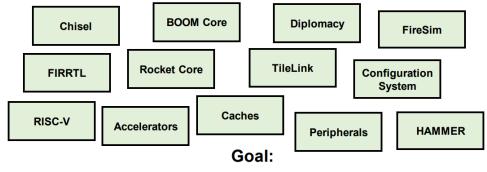
Authors: Ckristian Duran (UEC), Trong-Thuc Hoang (UEC/AIST), Akira Tsukamoto (AIST), Kuniyasu Suzaki (TRASIO/AIST), and Cong-Kha Pham (UEC)

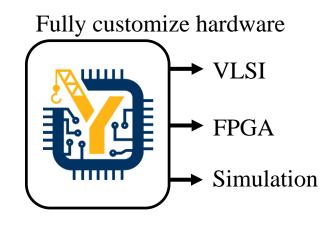
Outline

- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

Outline

1. Introduction


- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion


1. Introduction (1/3)

Open-sources framework for agile development of Chisel-based System-on-Chip

Berkeley Architecture Research has developed and open-sourced:

Make it easy for small teams to design, integrate, simulate, and tape-out a custom SoC Berkeley Architecture Research

Perks:

- Most common RISC-V cores: Rocket-chip, BOOM, Arianne (and updated frequently with the mainstream of those cores)
- FPGA accelerators included (Hwacha, Gemmini, NVDLA)
- Simulation supported (*RTL: Verilator, FPGA: FireSim, VLSI: Hammer*)

1. Introduction (2/3)

Based on Chipyard, a TEE-Hardware system is developed: <u>https://github.com/uec-hanken/tee-hardware</u>

uec-hanken / tee-hardware		③ Unwatch ▼ 2 ☆ Star 2 % Fork 1
✓> Code ① Issues ② Pull reque	ests 🕑 Actions 🔟 Projects 🖽 Wiki 😲 Security 🗠 Insi	nsights
양 master → 양 4 branches 📀 0 ta	ags Go to file Add file -	⊻ Code - About
ckdur Modify the fpga and simulatio	n builds to match the new xip. Update of 53672db on Jun 27 🕚 14	144 commits TEE hardware - based on the chipyard repository - hardware to accelerate TEE
📄 fpga	Modify the fpga and simulation builds to match the new xip. Updat 3 m	B months ago
hardware	Update of the configurations: Remove WithNMemoryChannels and 3 n	months ago
patches	Move the bootrom/ dir to inside the hardware/chipyard/ dir to avoi 4 n	I months ago
p roject	Initial configuration for sbt. Some empty files to do adaptation 10 n) months ago No releases published
simulator/verilator	Modify the fpga and simulation builds to match the new xip. Updat 3 n	B months ago Create a new release
software	Modify the fpga and simulation builds to match the new xip. Updat 3 n	B months ago
🗅 .gitignore	First multi-top, chip and harness generator 3 m	B months ago Packages
🗋 .gitmodules	Rename hardware/keystoneAcc folder to hardware/teehw 4 n	No packages published Publish your first package

1. Introduction (3/3)

TEE-HW has demos on:

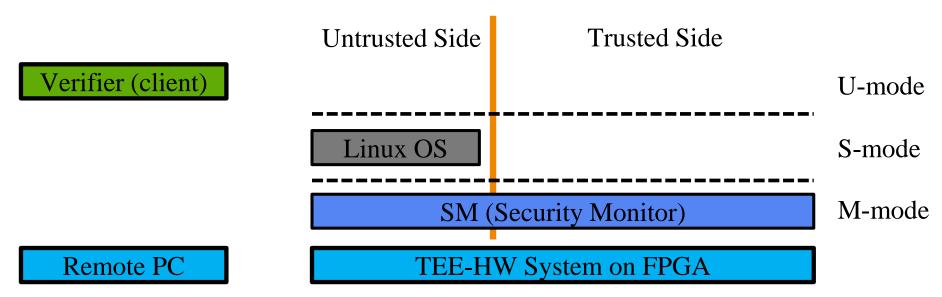
Altera: TR4

Altera: DE4

Outline

1. Introduction

2. Trusted Execution Environment

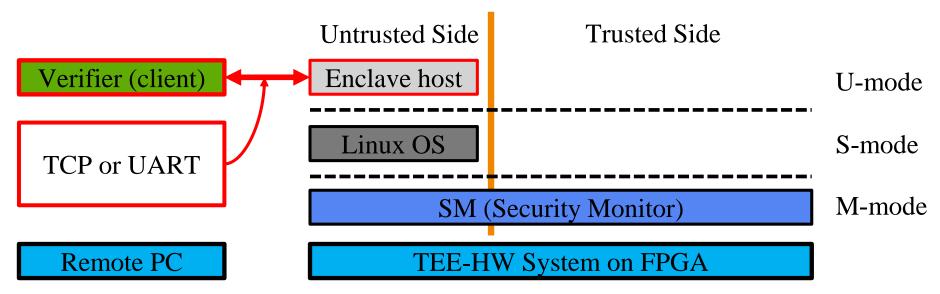

3. TEE-Hardware System

- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

2. Trusted Execution Environment (1/10)

TEE in-action (using Keystone: A TEE Framework)

Remote PC connects to FPGA via Serial (UART) terminal or a TCP connection

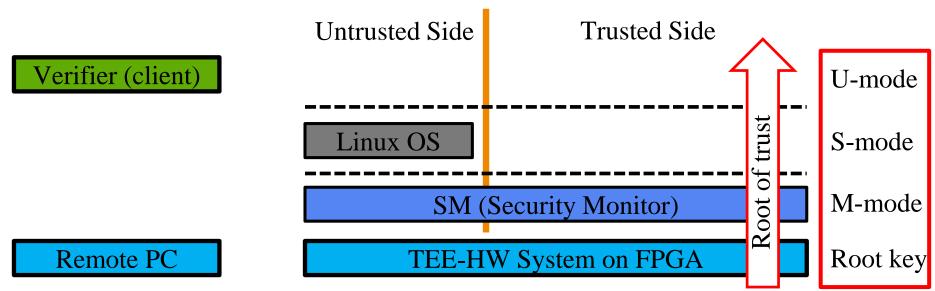

TEE (*Keystone in this case*) creates the Trusted-Side based on the chain-of-trust across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.

2. Trusted Execution Environment (2/10)

TEE in-action (using Keystone: A TEE Framework)

Remote PC connects to FPGA via Serial (UART) terminal or a TCP connection

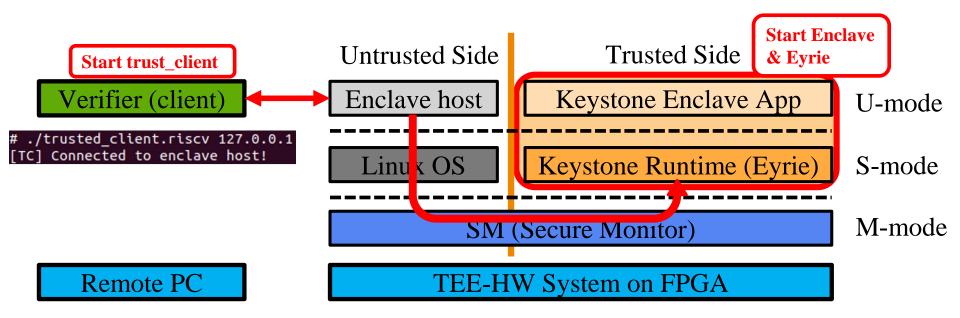

TEE (*Keystone in this case*) creates the Trusted-Side based on the chain-of-trust across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.

2. Trusted Execution Environment (3/10)

TEE in-action (using Keystone: A TEE Framework)

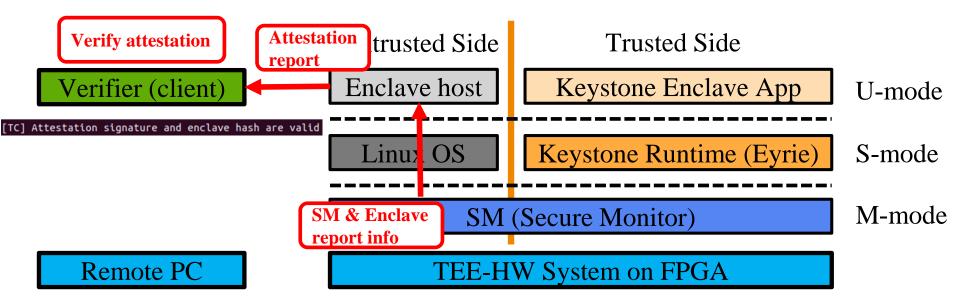
Remote PC connects to FPGA via Serial (UART) terminal or a TCP connection



TEE (*Keystone in this case*) creates the Trusted-Side based on the chain-of-trust across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.

2. Trusted Execution Environment (4/10)


TEE in-action (using Keystone: A TEE Framework)

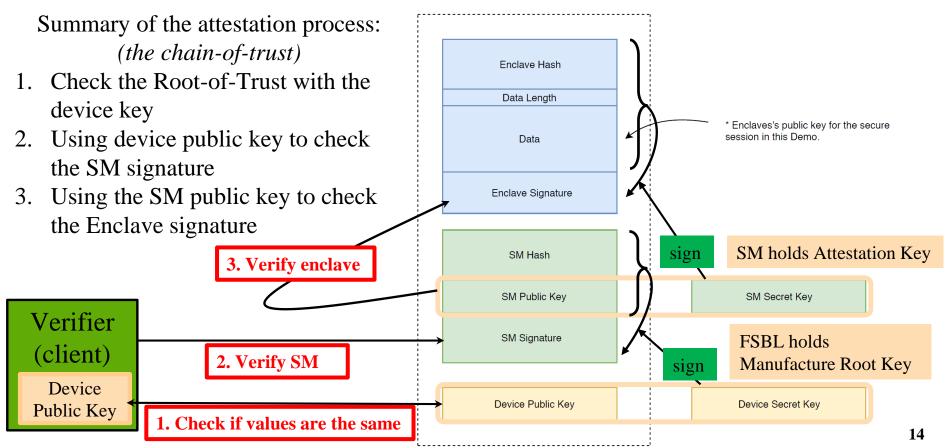
1. Connection with the Enclave host

2. Trusted Execution Environment (5/10)

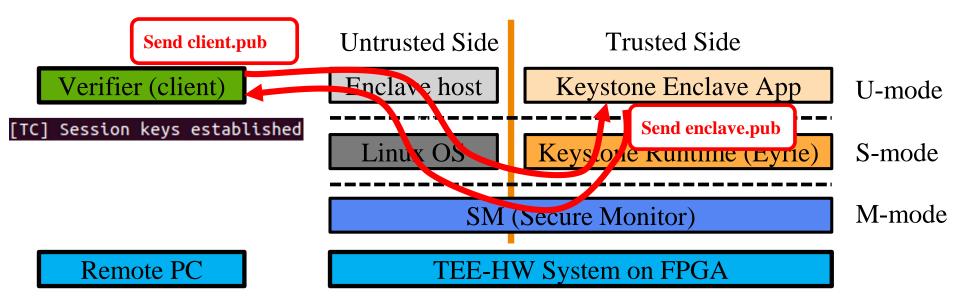
TEE in-action (using Keystone: A TEE Framework)

- 1. Connection with the Enclave host
- 2. Verify attestation report

2. Trusted Execution Environment (6/10)


TEE in-action (using Keystone: A TEE Framework)

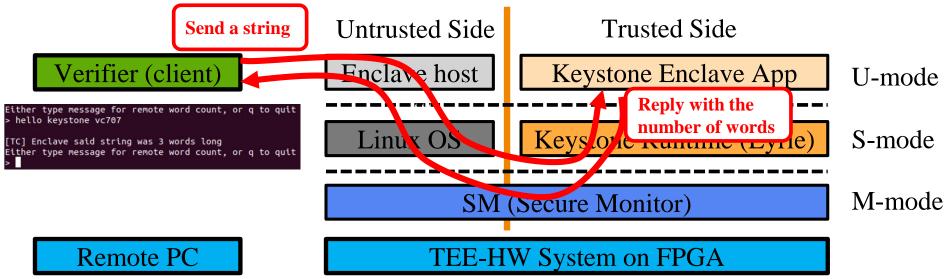
An example of attestation report:


2. Trusted Execution Environment (7/10)

TEE in-action (using Keystone: A TEE Framework)

2. Trusted Execution Environment (8/10)

TEE in-action (using Keystone: A TEE Framework)

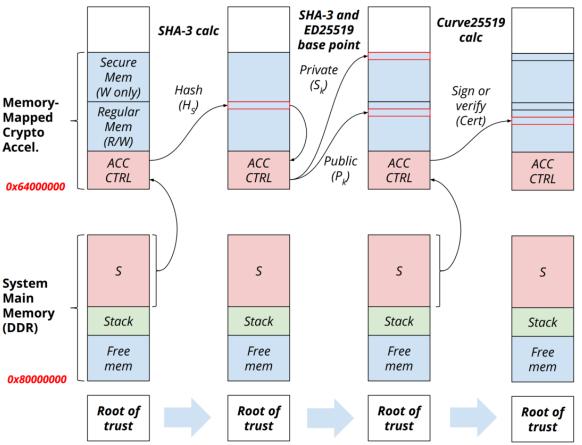


- 1. Connection with the Enclave host 3. Exchange communication keys
- 2. Verify attestation report

2. Trusted Execution Environment (9/10)

TEE in-action (using Keystone: A TEE Framework)

Keystone demo: (1) client sends strings, then (2) request calculation from the Enclave, finally (3) the Enclave replies with the number of words



- 1. Connection with the Enclave host
- 2. Verify attestation report

Exchange communication keys
 Client's app runs on the established TEE

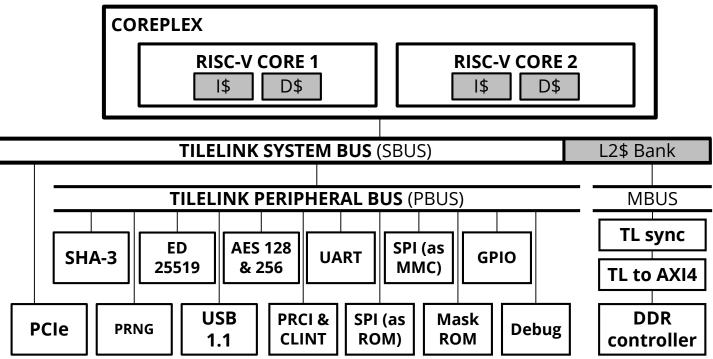
2. Trusted Execution Environment (10/10)

TEE Secure Boot Sequence (with HW Accelerators)

- The H_S value is automatically transferred between acts, thus it is not exposed to the software.
- The data in W-only memory are also not exposed to the software.

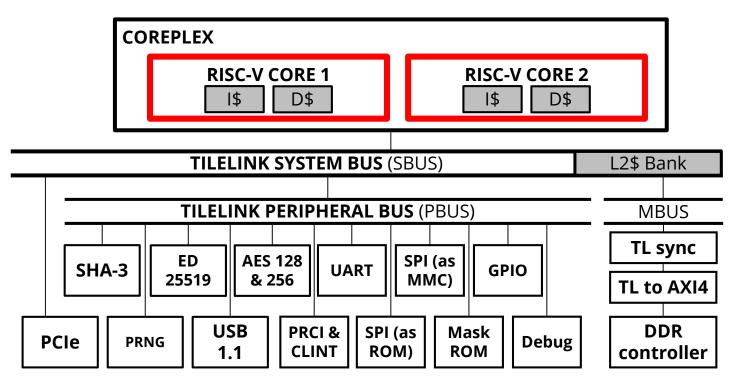
Outline

1. Introduction

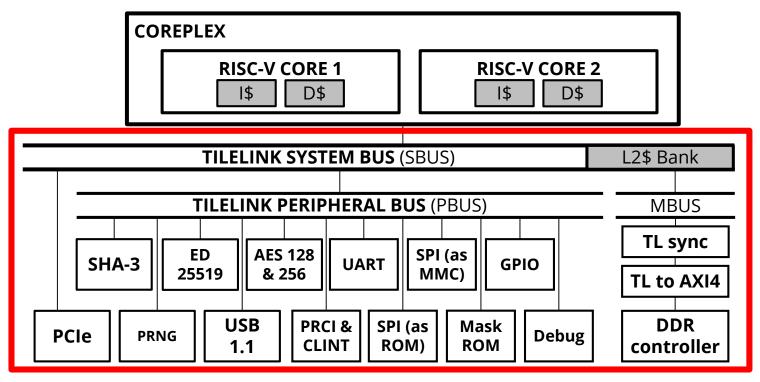

2. Trusted Execution Environment

3. TEE-Hardware System

- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion


3. TEE-Hardware System (1/6)

System Architecture:


- Not fixed at dual-core, can increase/decrease the number of cores as you wanted (as long as that fits the FPGA board)
- Some hardware modules can be easily included/excluded to/from the system

3. TEE-Hardware System (2/6)

- Available cores in the system are **Rocket-chip** and **BOOM**
- Because BOOMv3 isn't stable yet, so both BOOMv2 and BOOMv3 are available on the GitHub with different branches.

3. TEE-Hardware System (3/6)

- System Bus (SBUS), Memory Bus (MBUS), and Peripheral Bus (PBUS) hierarchy.
- Several Peripheral devices for IO (GPIO, MMC, UART, PCIe, USB), memory (DDR, SPI ROM, Mask ROM), and Crypto-cores (SHA-3, ED25519, AES, PRNG)

3. TEE-Hardware System (4/6)

Variable	Available option	Description	
BOARD	- VC707 - DE4 - TR4	Select the FPGA board	In the Makefile system, these variables are available.
ISACONF	 RV64GC RV64IMAC RV32GC RV32IMAC 	Select the ISA	Example usage:
MBUS	- MBus64 - MBus32	Select the bit-width for the memory bus	BOARD=VC707 ISACONF=RV64GC MBUS=MBus64
BOOTSRC	- BOOTROM - QSPI	Select the boot source	BOOTSRC=BOOTROM PCIE=WoPCIe
PCIE	- WPCIe - WoPCIe	Include PCIe module in the systemRemove PCIe module from the system	DDRCLK=WoSepaDDRClk HYBRID=Rocket
DDRCLK	WSepaDDRClkWoSepaDDRClk	 Separate DDR-clock with System-clock Not separate DDR-clock with System-clock 	
HYBRID	 Rocket Boom RocketBoom BoomRocket 	 Two Rocket cores Two Boom cores Rocket core 1st, Boom core 2nd Boom core 1st, Rocket core 2nd 	22

3. TEE-Hardware System (4/5)

TEE-HW with various core configurations

Boom					
# cat	/pro	c/cpuinfo			
hart	:	0			
isa	:	rv64imafdc			
mmu	:	sv39			
uarch	:	ucb-bar,boom0			
hart	:	1			
isa	:	rv64imafdc			
mmu	:	sv39			
uarch	:	ucb-bar,boom0			

Doom

Rocket

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0

BoomRocket

#	1	
# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	ucb-bar,boom0
hart	:	1
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0

RocketBoom

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	ucb-bar,boom0

RV64GC

# cat	/pro	c/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0
hart		
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0

RV64IMAC

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv64imac
mmu	:	sv39
uarch	:	sifive, rocket
hart	:	1
isa	:	rv64imac
mmu	:	sv39
uarch	:	sifive, rocket

RV32GC

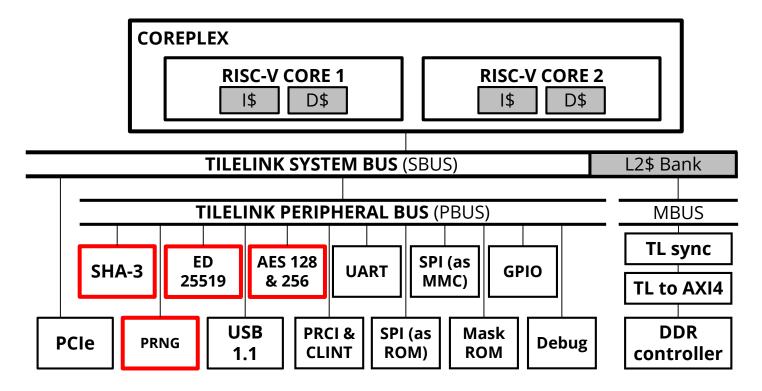
# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv32imafdc
mmu	:	sv32
uarch	:	sifive,rocket0
hart	:	1
isa	:	rv32imafdc
mmu	:	sv32
uarch	:	sifive, rocket0

RV32IMAC

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv32imac
mmu	:	sv32
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv32imac
mmu	:	sv32
uarch	:	sifive, rocket0

3. TEE-Hardware System (5/5)

Summary table of FPGA logic utilization (on VC707) with various core configurations:


ISACONF	HYBRID		FPGA logic utilization	
	Core0	Core1	(LUT) (on VC707)	
RV64GC	Boom	Boom	160,873	52.99%
	Rocket	Rocket	96,571	31.81%
	Boom	Rocket	128,708	42.39%
	Rocket	Boom	128,719	42.40%
RV64GC			96,571	31.81%
RV64IMAC	Rocket	Rocket	72,007	23.72%
RV32GC	Rocket	KOCKEI	89,356	29.43%
RV32IMAC			65,899	21.71%

Outline

1. Introduction

- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

4. Crypto-core Accelerators (1/6)

SHA-3 512

•

Crypto-cores:

- Ed25519 (genkey and signature)
- AES-128/256 PRNG (Pseudo-random generator)

4. Crypto-core Accelerators (2/6)

Some feature notes

- Crypto-Core can be implemented as a custom instruction (ROCC)
- AES supports on-the-fly 128 and 256 bits, and can be changed
- Ed25519 contains:

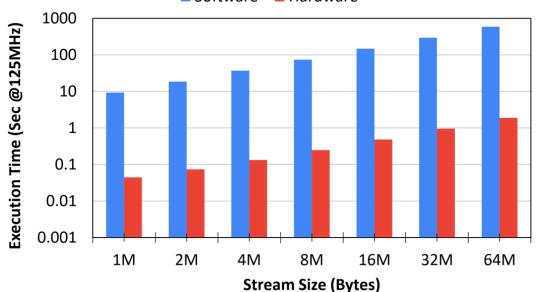
Ed25519-Mult for pair-key generation Ed25519-Sign for signature verification

• PRNG uses LFSR (*Linear-Feedback Shift Register*); and is based on ARM TrustZone RNG register model

4. Crypto-core Accelerators (3/6)

Crypto-cores on Stratix-IV FPGA

	SHA-3	AES-128/256	Ed25519	
			Mult	Sign
ALUT	8,108	3,195	2,737	3,969
Registers	2,790	2,854	4,778	4,617
Fmax (MHz)	100	100	100	100
Memory	0	0	8KB	0
DSP block	0	0	48	130
Total (%)	1.1	0.6	3.3	5.9

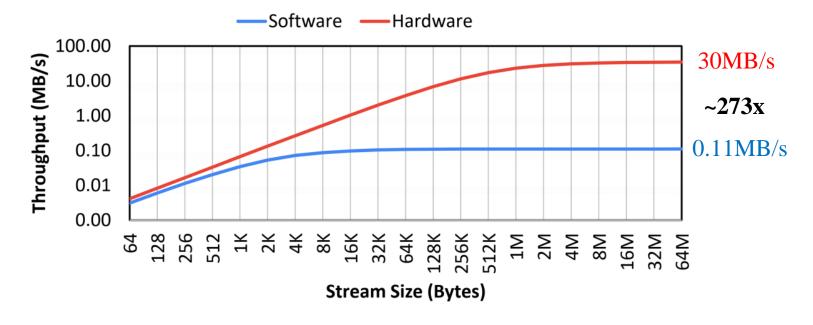

4. Crypto-core Accelerators (4/6)

Crypto-cores in ASIC (ROHM-180nm)

	SHA-3	AES-128/256	Ed25519	
			Mult	Sign
Size	1,150μm × 1,150μm	808.96μm × 806.4μm	1,694.72µm × 1,693.44µm	1,346.56µm × 1,345.68µm
Gate-count (NAND)	102,500	50,560	222,432	140,442
Fmax (MHz)	104	90	106	91
Power (mW)	42.745	37.566	53.061	80.894

4. Crypto-core Accelerators (5/6)

The result of using crypto-core hardware accelerators (*applying at boot stage*) The test was done on Stratix-IV FPGA with Rocket-chip RV64GC core

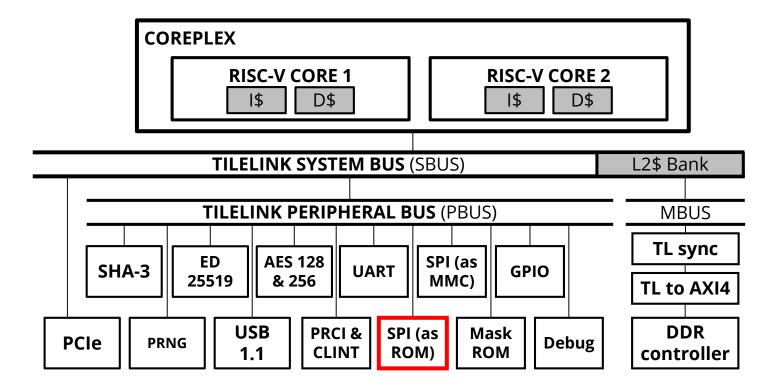


Software vs. hardware of SHA-3 execution times in the TEE framework. *Hardware is faster about 2.5 decades*

Software Hardware

4. Crypto-core Accelerators (6/6)

The result of using crypto-core hardware accelerators (*applying at boot stage*) The test was done on Stratix-IV FPGA with Rocket-chip RV64GC core



Software vs. hardware of SHA-3 operation throughput.

Outline

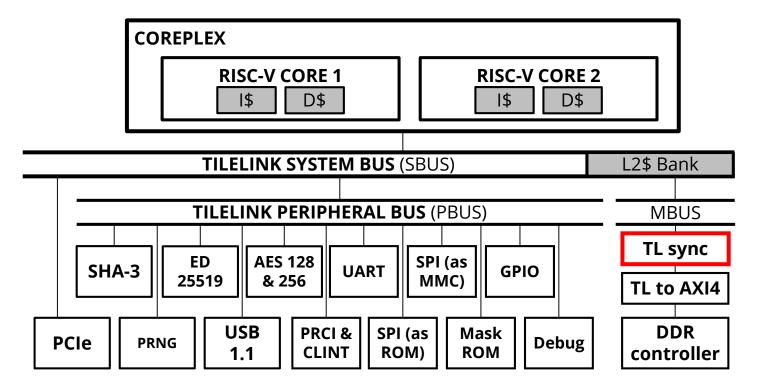

1. Introduction

- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

QSPI: to use Flash outside

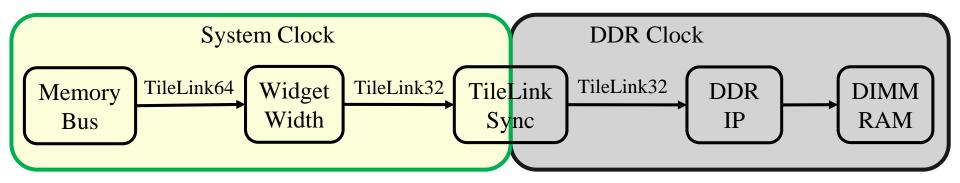
5. Other Hardware Modules (2/4)

Flash modules (cheap, bundle, and easy to plug-in with FPGA boards)



Easy to on/off the using of QSPI

- BOOTROM scenario:
 - Disable QSPI
 - BootROM at 0x2000000, ZSBL in BootROM
- QSPI scenario:
 - Enable QSPI at 0x20000000, ZSBL


now in Flash

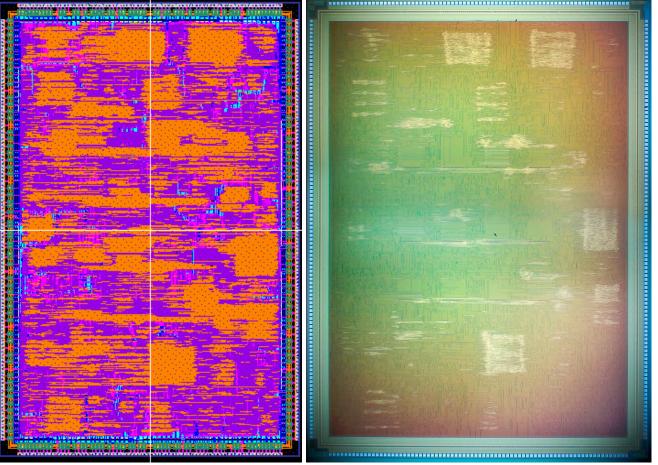
BootROM moved back to 0x10000, in BootROM now just a simple instruction to jump directly to 0x2000000

TileLink Sync: synchronize between different clock domains

5. Other Hardware Modules (4/4)

Separate the inner system clock with outer DDR clock:

- Sometime inner system cannot run at high-speed
 - \rightarrow System-clock < DDR-clock
 - \rightarrow Keep the DDR bandwidth still at high-speed
- Sometime (*depends on board*) DDR IP is fixed at lower clock rate (*for example, 100MHz*) than the CPU (*for example, 125MHz*)
 - \rightarrow System-clock > DDR-clock
 - \rightarrow Keep the CPU runs at higher clock rate

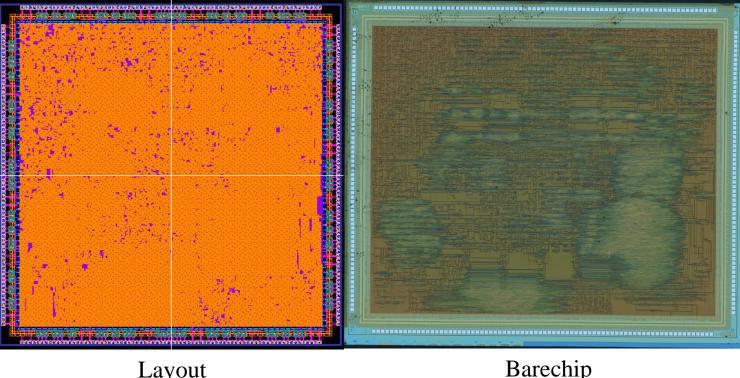

Outline

1. Introduction

- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

6. Conclusion (1/4)

Barechip



Layout

Features

- Cores: Rocket-chip (x4)
- ISA: RV64GC (crypto-cores aren't included)
- Size: $4,512\mu m \times 7,172\mu m$
- Fmax: 92 MHz
- Power: 391.125 mW
- Process: ROHM 180nm
- Fabricate: 10/2019

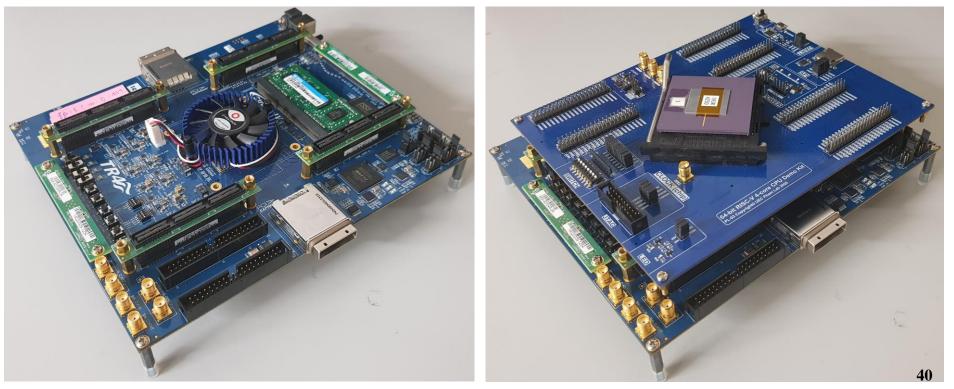
6. Conclusion (2/4)

Features

- Core: Rocketchip (x2)
- ISA: RV64GC
- Crypto-cores: SHA3-512, AES-128/256, Ed25519 (both *Mult and Sign*) Other: QSPI (for Flash), **USB1.1**

Layout

- Size: $4,573\mu m \times 4,578\mu m$
- Fmax: 98 MHz
- Power: 706.635 mW


- Process: ROHM 180nm
- Fabricate: 01/2020

6. Conclusion (3/4)

Solving the DDR problem for the chip by:

1. Using the DIMM RAM in the TR4

2. Having the PCB (with socket-chip) mounted on the TR4

6. Conclusion (4/4)

- We presented a system platform for Trusted Execution Environment (TEE) featuring crypto-cores accelerators.
- Completed TEE-Hardware system was developed with various configurations to fit specific needs; such as core options, hybrid options, ISA options, etc.
- The system was implemented and tested on various FPGAs (VC707, DE4, TR4) and ASIC (ROHM-180nm).
- The execution time of the TEE with hardware accelerators dropped significantly compared to software.

Acknowledge

 The presented work is based on results obtained from a project (JPNP16007) commissioned by the New Energy and Industrial Technology Development Organization (NEDO), and Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture.

Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture

THANK YOU FOR YOUR LISTENING