

Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture

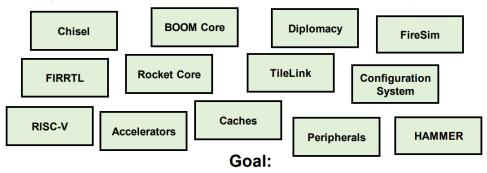
TEE Hardware for RISC-V Implementation

Authors: Ckristian Duran (UEC), Trong-Thuc Hoang (UEC/AIST), Akira Tsukamoto (AIST), Kuniyasu Suzaki (TRASIO/AIST), and Cong-Kha Pham (UEC)

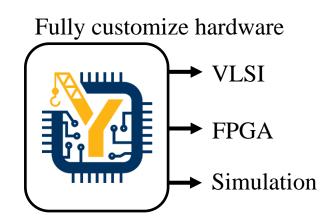
Outline

- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

Outline


- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

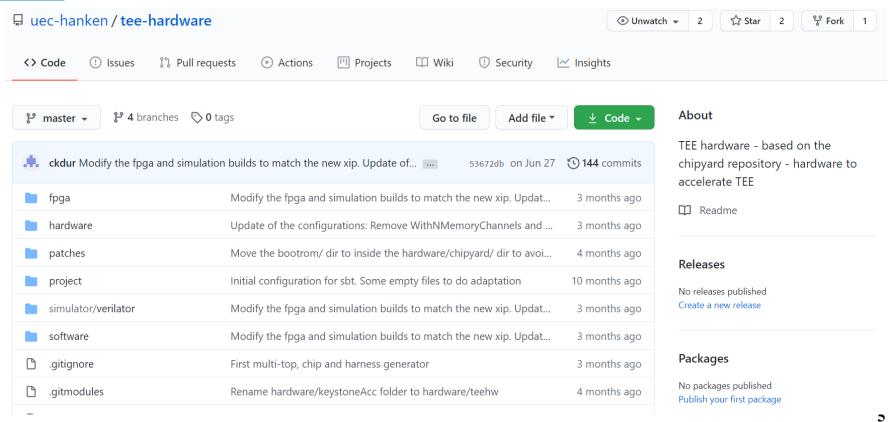
1. Introduction (1/3)



Open-sources framework for agile development of Chisel-based System-on-Chip

Berkeley Architecture Research has developed and open-sourced:

Make it easy for small teams to design, integrate, simulate, and tape-out a custom SoC Berkeley Architecture Research



Perks:

- Most common RISC-V cores: Rocket-chip, BOOM, Arianne (and updated frequently with the mainstream of those cores)
- FPGA accelerators included (Hwacha, Gemmini, NVDLA)
- Simulation supported (RTL: Verilator, FPGA: FireSim, VLSI: Hammer)

1. Introduction (2/3)

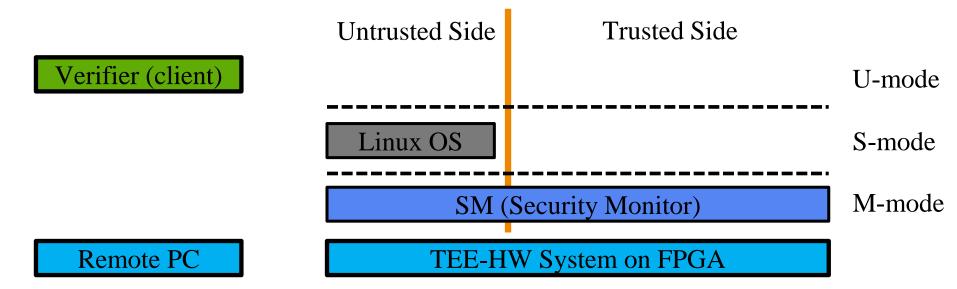
Based on Chipyard, a TEE-Hardware system is developed: https://github.com/uec-hanken/tee-hardware

1. Introduction (3/3)

TEE-HW has demos on:

Altera: TR4

Altera: DE4

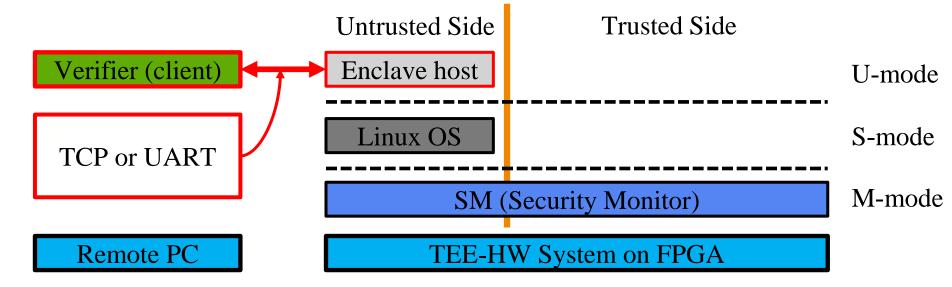

Outline

- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

2. Trusted Execution Environment (1/10)

TEE in-action (using Keystone: A TEE Framework)

Remote PC connects to FPGA via Serial (*UART*) terminal or a TCP connection

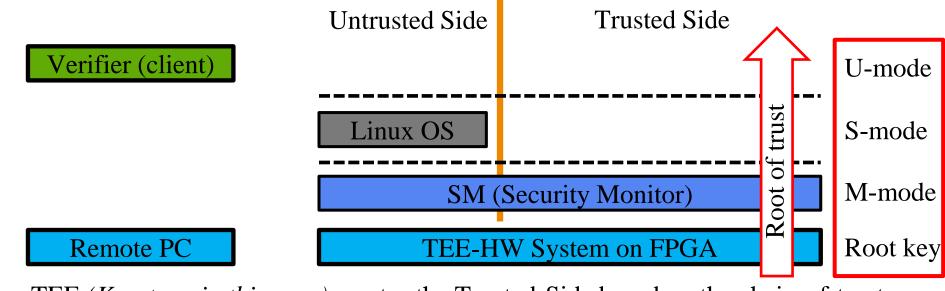

TEE (*Keystone in this case*) creates the Trusted-Side based on the chain-of-trust across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.

2. Trusted Execution Environment (2/10)

TEE in-action (using Keystone: A TEE Framework)

Remote PC connects to FPGA via Serial (*UART*) terminal or a TCP connection

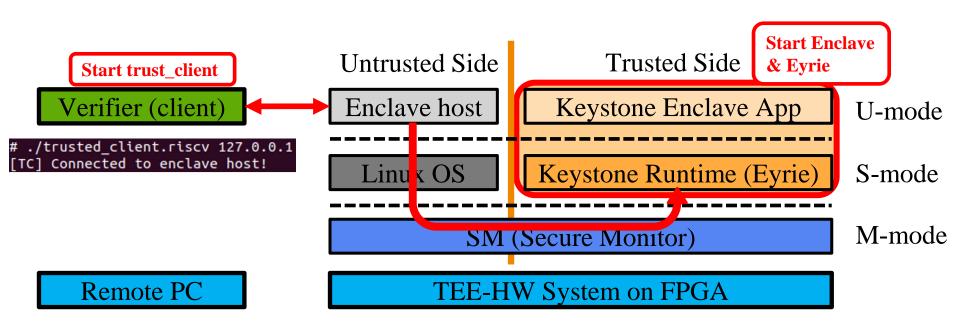

TEE (*Keystone in this case*) creates the Trusted-Side based on the chain-of-trust across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.

2. Trusted Execution Environment (3/10)

TEE in-action (using Keystone: A TEE Framework)

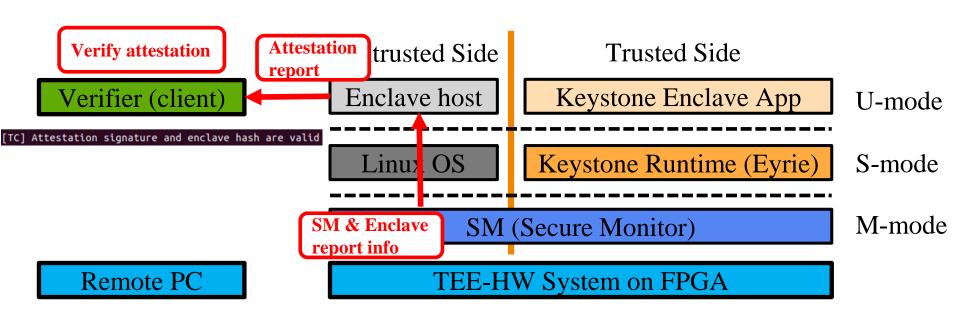
Remote PC connects to FPGA via Serial (*UART*) terminal or a TCP connection



TEE (*Keystone in this case*) creates the Trusted-Side based on the chain-of-trust across multiple operating layers.

It allows client to create and operate an Enclave App in the Trusted Side.

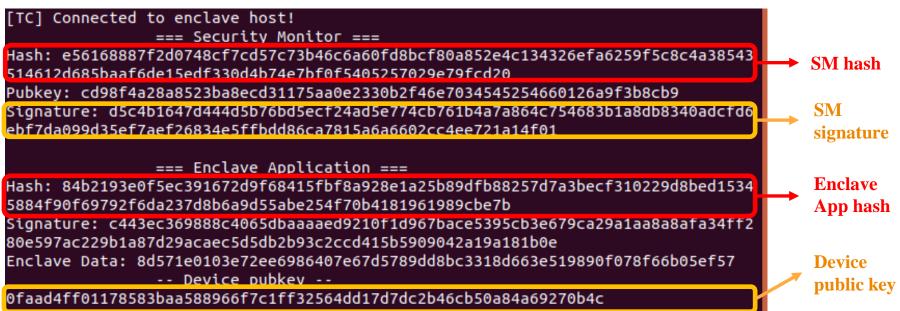
2. Trusted Execution Environment (4/10)


TEE in-action (using Keystone: A TEE Framework)

1. Connection with the Enclave host

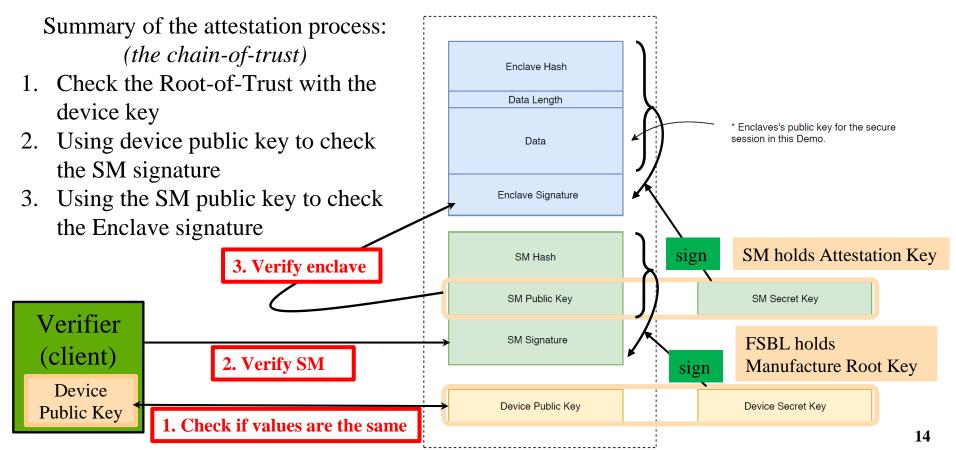
2. Trusted Execution Environment (5/10)

TEE in-action (using Keystone: A TEE Framework)

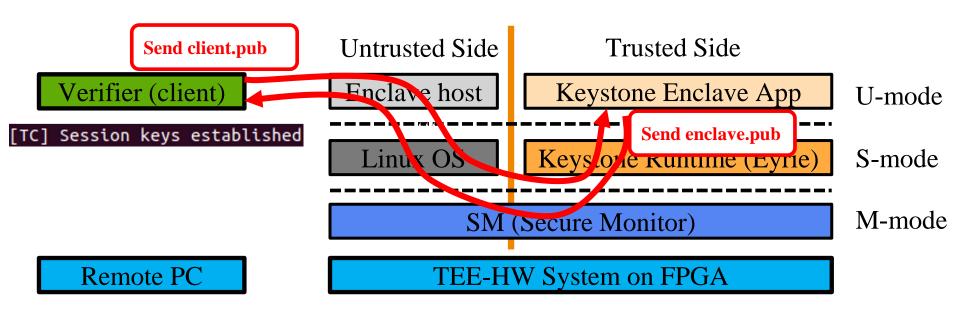


- 1. Connection with the Enclave host
- 2. Verify attestation report

2. Trusted Execution Environment (6/10)


TEE in-action (using Keystone: A TEE Framework)

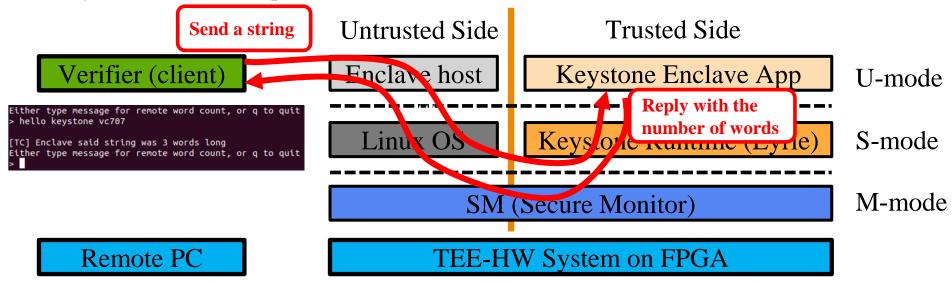
An example of attestation report:


2. Trusted Execution Environment (7/10)

TEE in-action (using Keystone: A TEE Framework)

2. Trusted Execution Environment (8/10)

TEE in-action (using Keystone: A TEE Framework)

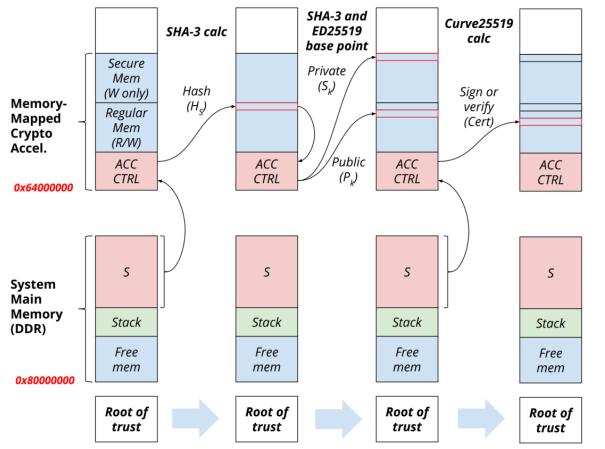


- 1. Connection with the Enclave host 3. Exchange communication keys
- 2. Verify attestation report

2. Trusted Execution Environment (9/10)

TEE in-action (using Keystone: A TEE Framework)

Keystone demo: (1) client sends strings, then (2) request calculation from the Enclave, finally (3) the Enclave replies with the number of words

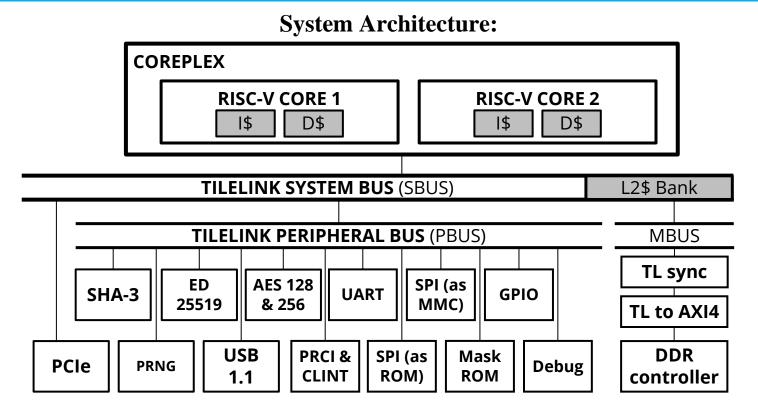


- 1. Connection with the Enclave host
- 2. Verify attestation report

- 3. Exchange communication keys
- 4. Client's app runs on the established TEE

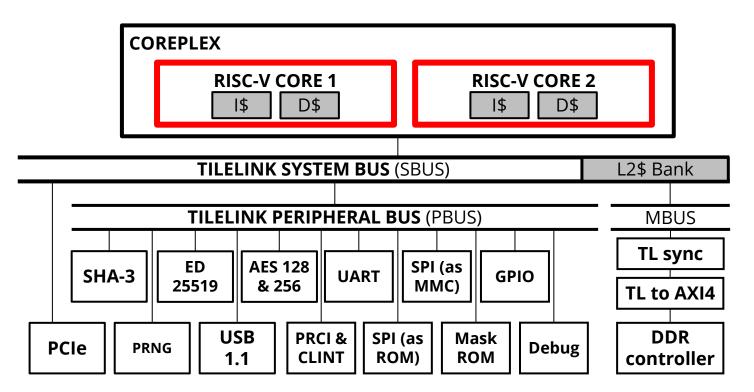
2. Trusted Execution Environment (10/10)

TEE Secure Boot Sequence (with HW Accelerators)

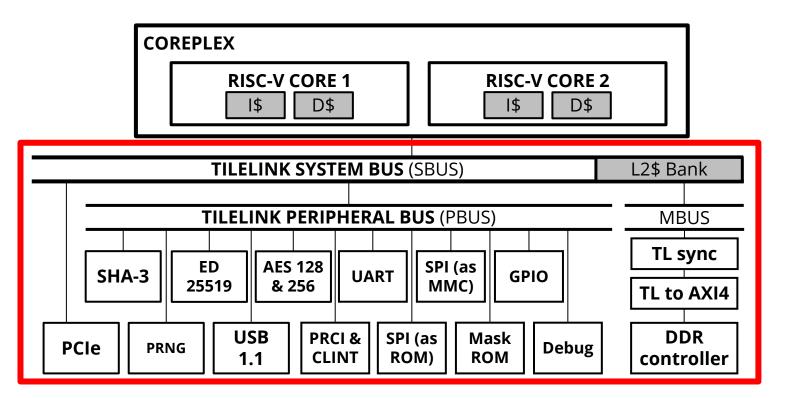


- The H_S value is automatically transferred between acts, thus it is not exposed to the software.
- The data in W-only memory are also not exposed to the software.

Outline


- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

3. TEE-Hardware System (1/6)


- Not fixed at dual-core, can increase/decrease the number of cores as you wanted (as long as that fits the FPGA board)
- Some hardware modules can be easily included/excluded to/from the system

3. TEE-Hardware System (2/6)

- Available cores in the system are **Rocket-chip** and **BOOM**
- Because BOOMv3 isn't stable yet, so both BOOMv2 and BOOMv3 are available on the GitHub with different branches.

3. TEE-Hardware System (3/6)

- System Bus (SBUS), Memory Bus (MBUS), and Peripheral Bus (PBUS) hierarchy.
- Several Peripheral devices for IO (GPIO, MMC, UART, PCIe, USB), memory (DDR, SPI ROM, Mask ROM), and Crypto-cores (SHA-3, ED25519, AES, PRNG)

3. TEE-Hardware System (4/6)

Variable	Available option	Description
BOARD	- VC707 - DE4 - TR4	Select the FPGA board
ISACONF	- RV64GC - RV64IMAC - RV32GC - RV32IMAC	Select the ISA
MBUS	- MBus64 - MBus32	Select the bit-width for the memory bus
BOOTSRC	- BOOTROM - QSPI	Select the boot source
PCIE	- WPCIe - WoPCIe	Include PCIe module in the systemRemove PCIe module from the system
DDRCLK	WSepaDDRClkWoSepaDDRClk	Separate DDR-clock with System-clockNot separate DDR-clock with System-clock
HYBRID	RocketBoomRocketBoomBoomRocket	 Two Rocket cores Two Boom cores Rocket core 1st, Boom core 2nd Boom core 1st, Rocket core 2nd

In the Makefile system, these variables are available.

Example usage:

BOARD=VC707
ISACONF=RV64GC
MBUS=MBus64
BOOTSRC=BOOTROM
PCIE=WoPCIe
DDRCLK=WoSepaDDRClk
HYBRID=Rocket

3. TEE-Hardware System (4/5)

TEE-HW with various core configurations

Boom

/proc/cpuinfo : 0 : rv64imafdc isa : sv39 mmu uarch : ucb-bar,boom0 hart : rv64imafdc isa : sv39 mmu : ucb-bar,boom0 uarch

RV64GC

# cat	/pro	c/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0

Rocket

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0

t0	
t0	

BoomRocket

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	ucb-bar,boom0
hart	:	1
isa	:	rv64imafdc
mmu	:	sv39
uarch	:	sifive, rocket0

RocketBoom

```
cat /proc/cpuinfo
        : 0
hart
        : rv64imafdc
        : sv39
        : sifive, rocket0
uarch
hart
isa
        : rv64imafdc
        : sv39
mmu
        : ucb-bar,boom0
uarch
```

RV64IMAC

# cat	/pro	c/cpuinfo
hart	:	0
isa	:	rv64imac
mmu	:	sv39
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv64imac
mmu	:	sv39
uarch	:	sifive, rocket0

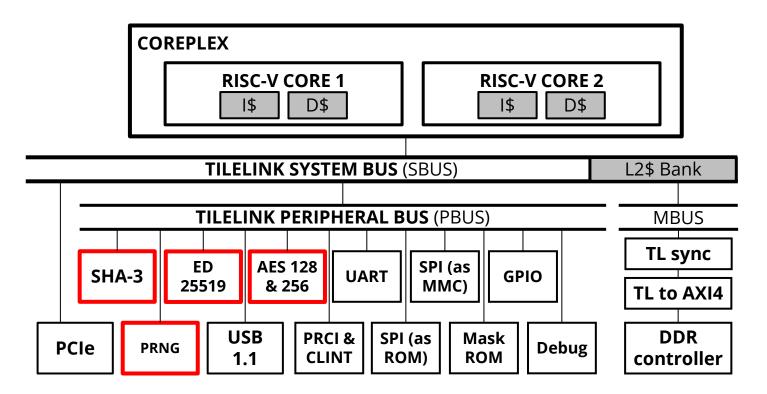
RV32GC

# cat	/pro	c/cpuinfo
hart	:	0
isa	:	rv32imafdc
mmu	:	sv32
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv32imafdc
mmu	:	sv32
uarch	:	sifive, rocket0

RV32IMAC

# cat	/pro	oc/cpuinfo
hart	:	0
isa	:	rv32imac
mmu	:	sv32
uarch	:	sifive, rocket0
hart	:	1
isa	:	rv32imac
mmu	:	sv32
uarch	:	sifive,rocket0

3. TEE-Hardware System (5/5)


Summary table of FPGA logic utilization (on VC707) with various core configurations:

	HYBRID		FPGA logic utilization	
ISACONF	Core0	Core1	(LUT) (on VC707)	
	Boom	Boom	160,873	52.99%
RV64GC	Rocket	Rocket	96,571	31.81%
KV04GC	Boom	Rocket	128,708	42.39%
	Rocket	Boom	128,719	42.40%
RV64GC		Rocket	96,571	31.81%
RV64IMAC	Rocket		72,007	23.72%
RV32GC	Rocket		89,356	29.43%
RV32IMAC			65,899	21.71%

Outline

- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

4. Crypto-core Accelerators (1/6)

Crypto-cores:

• SHA-3 512

- Ed25519 (genkey and signature)
- AES-128/256
- PRNG (Pseudo-random generator)

4. Crypto-core Accelerators (2/6)

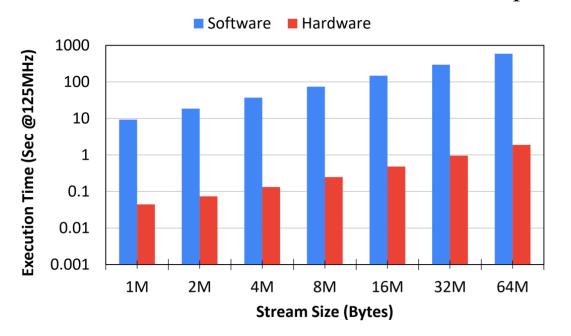
Some feature notes

- Crypto-Core can be implemented as a custom instruction (ROCC)
- AES supports on-the-fly 128 and 256 bits, and can be changed
- Ed25519 contains:
 Ed25519-Mult for pair-key generation
 Ed25519-Sign for signature verification
- PRNG uses LFSR (*Linear-Feedback Shift Register*); and is based on ARM TrustZone RNG register model

4. Crypto-core Accelerators (3/6)

Crypto-cores on Stratix-IV FPGA

	CIII A 2	AES-128/256	Ed25519		
	SHA-3		Mult	Sign	
ALUT	8,108	3,195	2,737	3,969	
Registers	2,790	2,854	4,778	4,617	
Fmax (MHz)	100	100	100	100	
Memory	0	0	8KB	0	
DSP block	0	0	48	130	
Total (%)	1.1	0.6	3.3	5.9	

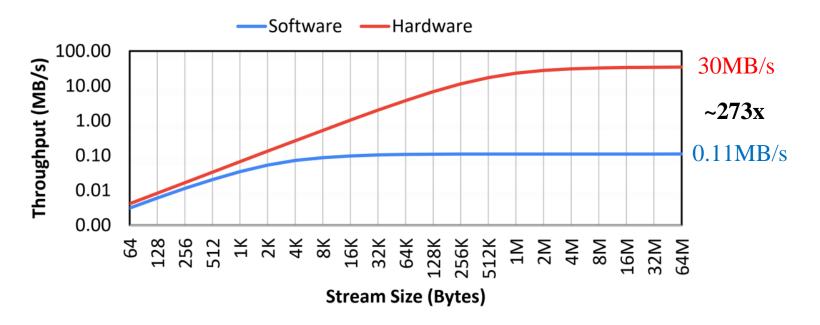

4. Crypto-core Accelerators (4/6)

Crypto-cores in ASIC (ROHM-180nm)

	CIIA 2	AES-128/256	Ed25519	
	SHA-3		Mult	Sign
Size	1,150μm × 1,150μm	808.96μm × 806.4μm	1,694.72μm × 1,693.44μm	1,346.56µm × 1,345.68µm
Gate-count (NAND)	102,500	50,560	222,432	140,442
Fmax (MHz)	104	90	106	91
Power (mW)	42.745	37.566	53.061	80.894

4. Crypto-core Accelerators (5/6)

The result of using crypto-core hardware accelerators (applying at boot stage)
The test was done on Stratix-IV FPGA with Rocket-chip RV64GC core

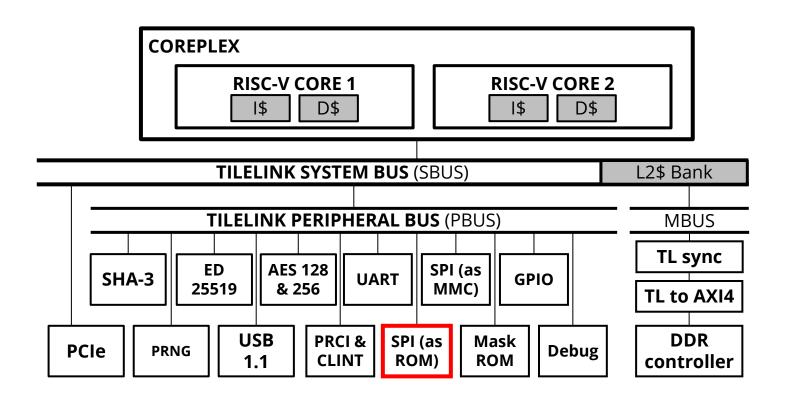


Software vs. hardware of SHA-3 execution times in the TEE framework.

Hardware is faster about 2.5 decades

4. Crypto-core Accelerators (6/6)

The result of using crypto-core hardware accelerators (applying at boot stage)
The test was done on Stratix-IV FPGA with Rocket-chip RV64GC core



Software vs. hardware of SHA-3 operation throughput.

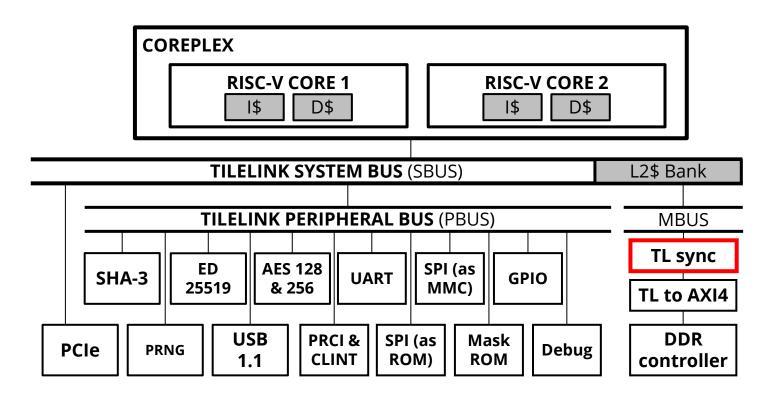
Outline

- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

5. Other Hardware Modules (1/4)

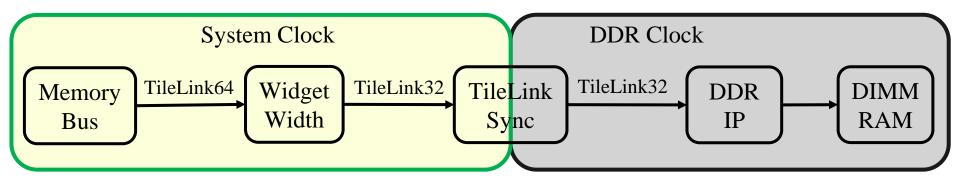
QSPI: to use Flash outside

5. Other Hardware Modules (2/4)



Flash modules (cheap, bundle, and easy to plug-in with FPGA boards)

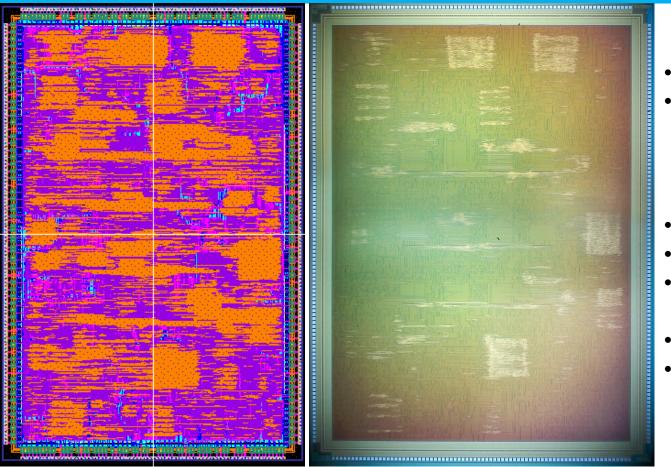
Easy to on/off the using of QSPI


- **BOOTROM** scenario:
 - ➤ Disable QSPI
 - ➤ BootROM at 0x20000000, ZSBL in BootROM
- QSPI scenario:
 - ₆ ➤ Enable QSPI at 0x20000000, ZSBL now in Flash
 - ➤ BootROM moved back to 0x10000, in BootROM now just a simple instruction to jump directly to 0x20000000

5. Other Hardware Modules (3/4)

TileLink Sync: synchronize between different clock domains

5. Other Hardware Modules (4/4)


Separate the inner system clock with outer DDR clock:

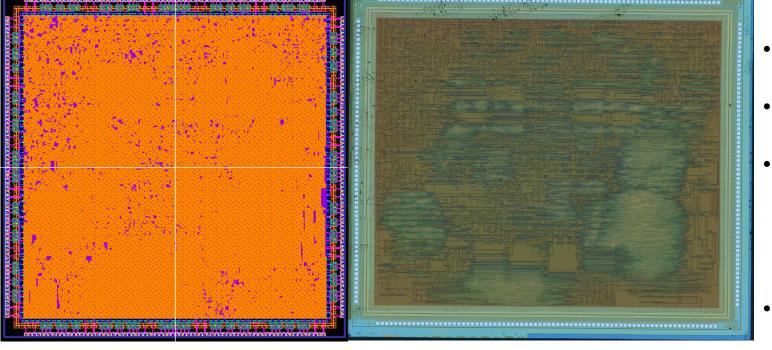
- Sometime inner system cannot run at high-speed
 - → System-clock < DDR-clock
 - → Keep the DDR bandwidth still at high-speed
- Sometime (depends on board) DDR IP is fixed at lower clock rate (for example, 100MHz) than the CPU (for example, 125MHz)
 - → System-clock > DDR-clock
 - → Keep the CPU runs at higher clock rate

Outline

- 1. Introduction
- 2. Trusted Execution Environment
- 3. TEE-Hardware System
- 4. Crypto-cores Accelerators
- 5. Other Hardware Modules
- 6. Chip Results & Conclusion

6. Conclusion (1/4)

Features


- Cores: Rocket-chip (x4)
- ISA: RV64GC (crypto-cores aren't included)
- Size: $4,512\mu m \times 7,172\mu m$
- Fmax: 92 MHz
- Power: 391.125 mW
- Process: ROHM 180nm
- Fabricate: 10/2019

Layout

Barechip

38

6. Conclusion (2/4)

FeaturesCore: Rocket-

- chip (**x2**)
- ISA: RV64GC

Crypto-cores:

- SHA3-512, AES-128/256, Ed25519 (both Mult and Sign)
- Other: QSPI (for Flash), USB1.1

• Size: $4,573\mu m \times 4,578\mu m$

• Fmax: 98 MHz

• Power: 706.635 mW

Layout

Process: ROHM 180nm

Barechip

Fabricate: 01/2020

6. Conclusion (3/4)

Solving the DDR problem for the chip by:

- 1. Using the DIMM RAM in the TR4
- 2. Having the PCB (with socket-chip) mounted on the TR4

6. Conclusion (4/4)

- We presented a system platform for Trusted Execution Environment (TEE) featuring crypto-cores accelerators.
- Completed TEE-Hardware system was developed with various configurations to fit specific needs; such as core options, hybrid options, ISA options, etc.
- The system was implemented and tested on various FPGAs (VC707, DE4, TR4) and ASIC (ROHM-180nm).
- The execution time of the TEE with hardware accelerators dropped significantly compared to software.

Acknowledge

• The presented work is based on results obtained from a project (JPNP16007) commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture

THANK YOU FOR YOUR LISTENING