

Syntacore 32/64bit RISC-V IP product line

Alexander Redkin Executive director

RISC-V Tokyo Day September 30 2019

Outline

- Company intro
- RISC-V compatible IP
- Customization service

Syntacore introduction

IP company, founding member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores

- Silicon-proven and shipping to customers
- 4+ years of focused RISC-V development
- Core team comes from 10+ years of highly-relevant background
- SDKs, samples in silicon, full collateral

Full service to specialize CPU IP for customer needs

- One-stop workload-specific customization for 10x improvements
 - with tools/compiler support
- IP hardening at the required library node
- SoC integration and SW migration support

Company background

HQ at Cyprus (EU)

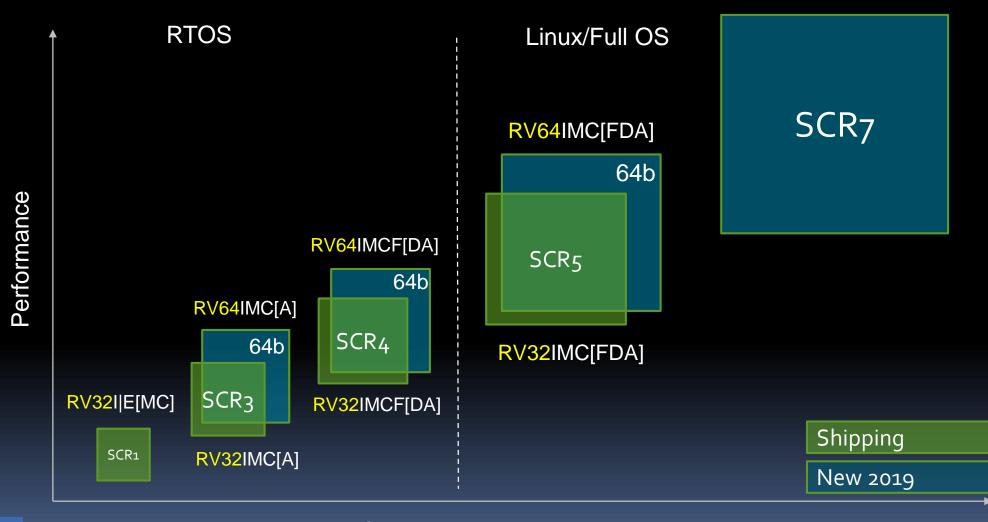
- R&D offices in St.Petersburg and Moscow (Russia)
- Representatives in China/APAC, EMEA

Team background:

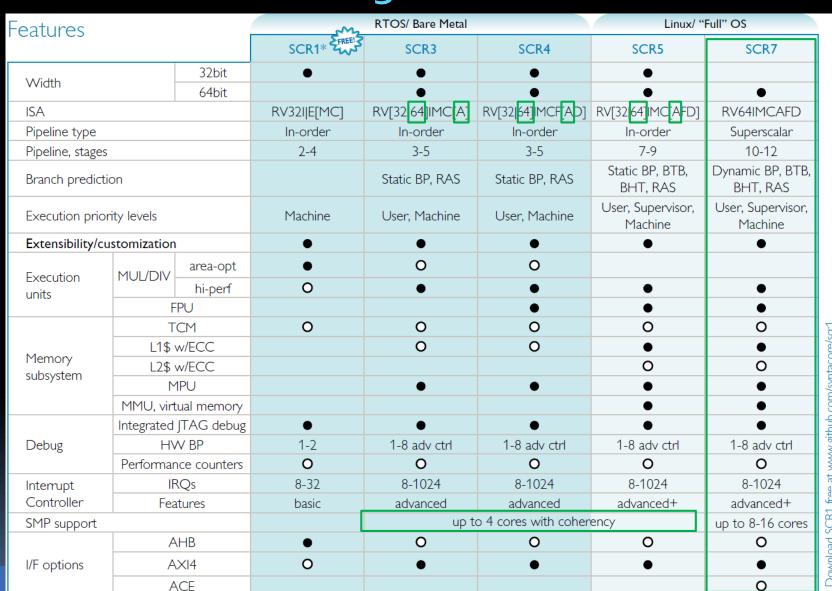
- 10+ years in the corporate R&D (major semi MNC)
- Developed cores and SoC are in the mass productions
- 15+ tapeouts, 180..14nm

Expertise:

- Low-power and high-performance embedded cores and IP
- ASIP technologies and reconfigurable architectures
- Architectural exploration & workload characterization
- Compiler technologies



SCRx baseline cores 2019

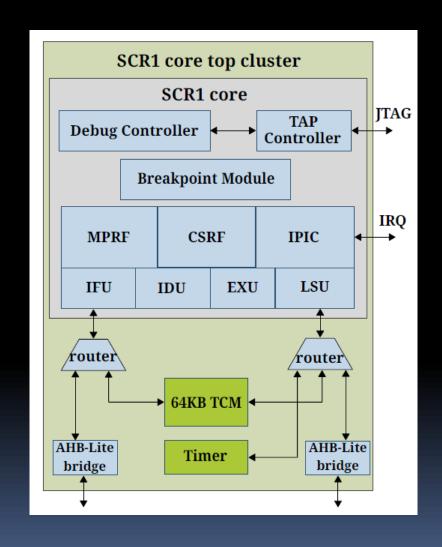


RV64IMCFDA

SCRx IP features at glance

Baseline cores:

- Clean-slate designs in System Verilog
- Configurable and extensible
- 100% compatible with major EDA flows



SCR1 overview

Compact MCU core for deeply embedded applications and accelerator control

- RV32I | E[MC] ISA
- 2 to 4 stages pipeline
- M-mode only
- Optional configurable IPIC
 - 8..32 IRQs
- Optional integrated Debug Controller
 - OpenOCD compatible
- Choices of the optional MUL/DIV unit
 - Area- or performance- optimized
- Open sourced under SHL-license (Apache 2.0 derivative)
 - Unrestricted commercial use allowed
- High quality, silicon-proven <u>free</u> MCU IP
- In the top System Verilog Github repos in the world
- Best-effort support provided, commercial offered

SCR1 overview cont

Performance*, per MHz	DMIPS	-02	1.28		
		-best**	1.89		
	Coremark	-best**	2.95		

^{*} Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

Synthesis data:

Minimal RV32EC config: 11 kGates

Default RV32IMC config: 32 kGates

Range 10..40+ kGates

250+ MHz @ tsmc90lp {typical, 1.0V, +25C}

What's new:

- Extensive user guide and quick start collateral
 - works out-of-the-box in all major sims
- Verilator support
- More tests/sample: RISC-V compliance, others
- Taped-out @several companies
- Regular talk at ORCONF
- Updated and maintained

^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

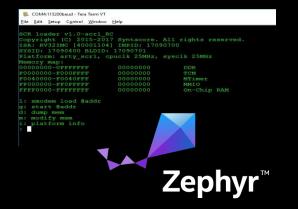
SCR₁ SDK

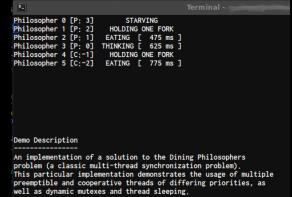
https://github.com/syntacore/scr1-sdk

Repository content:

- docs SDK documentation
- fpga SCR1 SDK FPGA projects
- images precompiled binary files
- scr1 SCR1 core source files
- sw sample SW projects

Supported platforms:


- Digilent Arty and Nexys 4 (Xilinx)

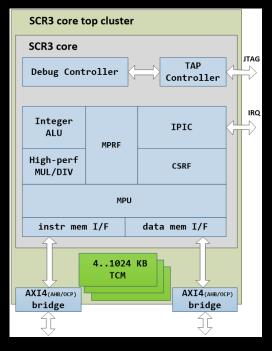

Terasic DE10-Lite and Arria V GX starter (Intel)

Software:

- Bootloader
- Zephyr OS
- Tests/sample apps
- Pre-built GCC-based toolchain (Win/Linux)

Fully open designs and pre-build images

One of the easiest paths to start with **RISC-V**

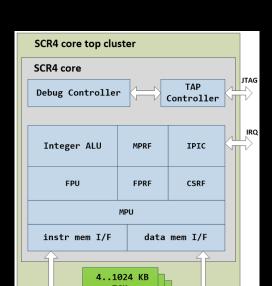

SCR3: 32 or 64 bit

High-performance multicore capable MCU-class core

- RV32I[MCA] or RV64I[MCA] ISA
- Machine and User privilege modes
- **Optional MPU (Memory Protection Unit)**
- Optional Tightly Coupled Memory (TCM), L1 caches ECC/parity
- 32|64bit AHB or AXI4 external interface
- Optional high-performance or area-optimized MUL/DIV unit
- Integrated IRQ controller and PLIC
- Advanced debug with JTAG i/f
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
 - with memory coherency

			RV32	RV64
Performance*, per MHz	DMIPS	-O2	1.86	1.97
	טוווורט	-best**	2.937	3.27
	Coremark	-best**	3.30	3.40

Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM


^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

SCR4: 32 or 64 bit

High-performance multicore capable MCU core with FPU

- RV32IMCF[DA] or RV64IMCF[DA] ISA
- U- and M-mode
- Configurable advanced BP, fast MUL/DIV
- Integrated IRQ controller and PLIC
- 32|64bit bit AHB or AXI4 external interface
- Optional MPU, TCM, L1 caches w/ECC
- Advanced debug controller with JTAG
- Configurable SP or DP FPU
 - IEEE 754-2008 compliant
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
 - with memory coherency

AXI4(AHB/OCP

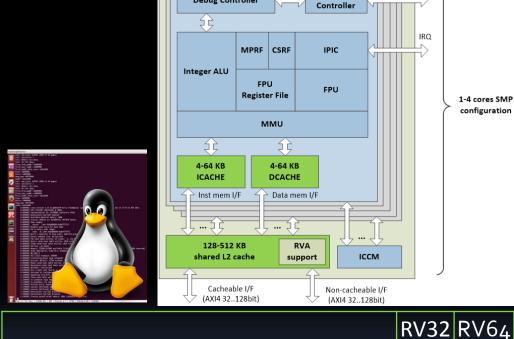
bridge

			RV32	RV64
	DMIPS	-02	1.86	1.97
Performance*,	DIVIIF3	-best**	2.96	3.27
per MHz	Coremark	-best**	3.30	3.40
	DP Whetstone	-best**	1.22	1.22

Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM from TCM

AXI4(AHB/OCP

bridge


^{** -}O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

SCR5: 32 or 64 bit

Efficient entry-level APU/embedded core

- RV32IMC[AFD] or RV64IMC[AFD] ISA
- Multicore configs up to 4 SCRx cores
 - SMP and heterogeneous
- Advanced BP (BTB/BHT/RAS)
- IRQ controller (integrated and PLIC)
- M-, S- and U-modes
- Virtual memory support, full MMU
- L1, L2 caches with coherency, atomics, ECC
- High performance double-precision FPU
- **Linux** and FreeBSD support
- 1GHz+@28nm
- Advanced debug with JTAG i/f

DMIPS

-O2

SCR5 core top SMP cluster

Debug Controller

SCR5 core 0 SCR5 core

Performance*,

per MHz

1,60 1.70

2,48 2.62

2,83 3.02

1-4 cores SMP configuration

^{**} O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

RV64 SCR7

Efficient mid-range application core

- RV64GC ISA
- Multicore configs up to 8, later 16 cores
- Flexible uarch template, 10-12 stage pipeline
- Initial SCR7 configuration (Q1'19):
 - Decode and dispatch of up to two instructions per cycle
 - Out-of-order issue of up to four micro-ops
 - Out-of-order completion, in-order retirement
- M-, S- and U-modes
- Virtual memory support, full MMU
- 16-64KB L1, up to 2MB L2 cache with ECC
- 1.2GHz+ @28nm
- Advanced debug with JTAG i/f

2-way SCR7 implementation

4-way SCR7 implementation

App-specific mix of Integer, FPU and LSU pipelines

Performance*,	
per MHz	

DIMIDC	-02	2.75			
	-best**	3.01			
Coremark	-best**	5.00*			

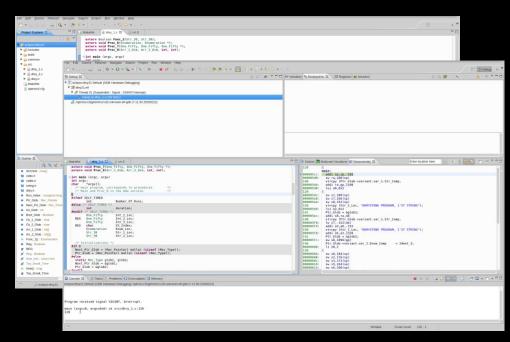
- * Preliminary data, 2-way implementation, Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM
- ** O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

Fully featured SW development suite

Stable IDE in production:

- GCC 8.1
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

Hosts: Linux, Windows


Targets: BM, Linux (beta)

Also available:

- LLVM 5.0
- CompCert 3.1
- 3rd party vendors in 2019

Simulators:

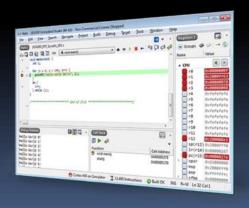
- Qemu
- Spike
- 3rd party vendors

JTAG-based debug solutions:

Supports: Segger J-link, Olimex ARM-USB-OCD family, Digilink JTAG-HS2, Lauterbach trace32, more vendors

Number of 3rd party tools support SCRx cores

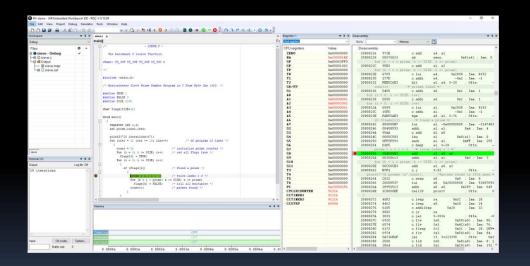
Lauterbach Trace32



https://www.lauterbach.com/frames.html?pro/pro__syntacore.html

Segger Embedded Studio

https://wiki.segger.com/Syntacore_SCR1_SDK_Arty



IAR Embedded Workbench

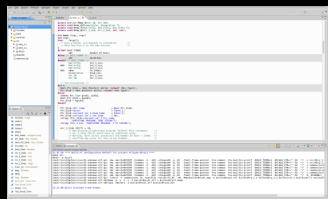
NEW!

https://www.iar.com/iar-embedded-workbench/#!?architecture=RISC-V

...more in 2019

SCR_x SDK

Stable Eclipse/gcc based toolchain with IDE:


- GCC 8.1
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger o.1o.o
- Eclipse 4.9.0

HW platform based on standard FPGA dev.kits

- Multiple boards supported (Altera, Xilinx)
- Low-cost 3rd party JTAG tools
- Open design for easy start

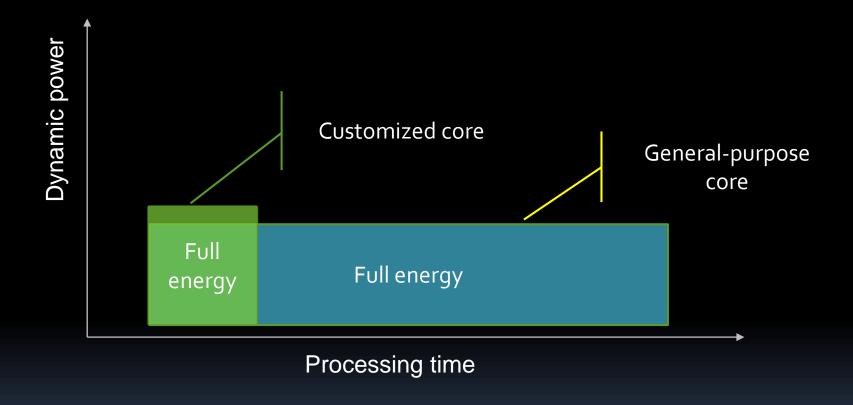
SW:

- Bootloader
- OS: Zephyr/FreeRTOS/Linux
- Application samples, tests, benchmarks

This particular implementation demonstrates the usage of multiple preemptible and cooperative threads of differing priorities, as

well as dynamic mutexes and thread sleeping.

M COM4:115200baud - Tera Term VT



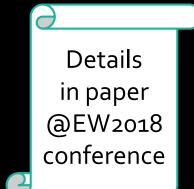
Extensibility/customization: how it works

Extensibility features:

- Computational capabilities
 New functions using existing HW
 New Functional Units
- Extended storage
 Mems/RF, addressable or state
 Custom AGU
- I/O ports
- Specialized system behavior
 Standard events processing
 Custom events

Domain examples:

- Computationally intensive algorithms acceleration
- Specialized processors (including DSP)
- High-throughput applications
 - Wire Speed Processing/DPI/Realtime/Comms



Custom ISA extension for AES & other crypto kernels acceleration for SCR5

- Data
 - RV32G FPGA-based devkit, g++ 5.2.0, Linux 4.6, optimized C++ implementation
 - Rv32G + custom same + intrinsics
 - Core i7 6800K @ 3.4GHz, g++ 5.4.0, Linux 64, optimized C++ implementation
- 60..575x speedup @ modest area increase: 11.7% core, 3.7% at the CPU cluster level

		Encoding throughput, MB/s		Normalized per MHz, MB/s			RV32G + custom			
Platform	Fmax, MHz	Crypto-1	Crypto-2	AES-128	Crypto-1	Crypto-2	AES-128			
RV ₃₂ G	20	0.025	0.129	0.238	0.00125	0.00645	0.0119	575.00	117.74	60.93
RV32G + custom	20	14.375	15.188	14.502	0.71875	0.7594	0.7251			
Core i7	3400	79.115	235.343	335.212	0.02327	0.06922	0.09859	30.89	10.97	7-35
Core i7 + NI	3400			3874.552			1.13957			0.64

Disclaimer: Authors are aware AES allows for more efficient dedicated accelerators designs, used as example algorithm

Getting access/evaluation

SCR₁

- Is fully open: https://github.com/syntacore/scr1-sdk
- SHL-licensed with unrestricted commercial use allowed
 - Commercial SLA-based support is available

SCR 3 4 5 7

Full package* access is available after simple evaluation agreement

For more info: evaluation@syntacore.com

(*) sufficient for evaluation and tapeout

Summary

- Syntacore offers high-quality RISC-V compatible CPU IP
 - Founding member, fully focused on RISC-V since 2015
 - Silicon-proven and shipping in mass-production
 - Turnkey IP customization services
 - with full tools/compiler support

Visit our booth for SCRx demos, including RISC-V silicon

Thank you!