

Leading Semiconductor Design Revolution with SiFive 7-series RISC-V Core IP Enabling Embedded Intelligence

We invented RISC-V

SiFive's founders are the same
UC Berkeley professor and
PhDs who invented and have
been leading the commercial
implementation of the RISC-V
Instruction Set Architecture
(ISA) since 2010

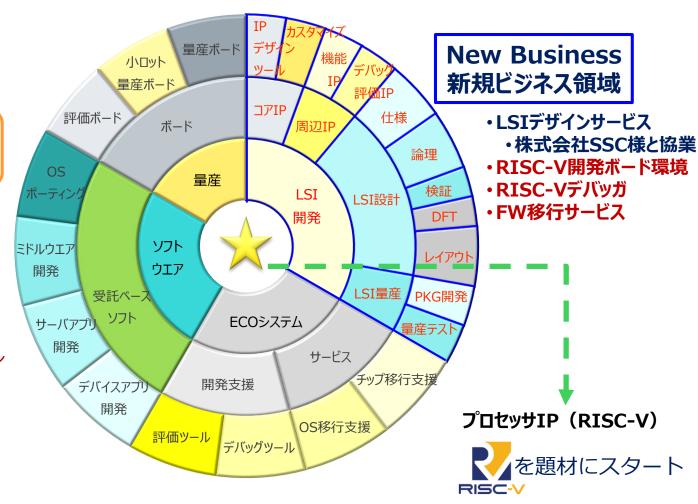
About SiFive

Worldwide Presence

13 Offices 350+ Employees (275+ Engineers) 300+ Tapeouts

World-class expertise

- Inventors of RISC-V
- Chip Design in the Cloud
- RTL Design & Verification
- FPGA & Emulation
- Physical Design
- Wafer Fabrication
- Board Design
- Full Silicon Validation



SiFive社日本国内代理店 DTSインサイトが目指すビジネス領域

ハードウェア/ファームウェア組込などの得意領域を活かし、 お客様のあらゆるニーズにお応えする**One Stop Solution**をご提案いたします

Mainstream 既存ビジネス領域

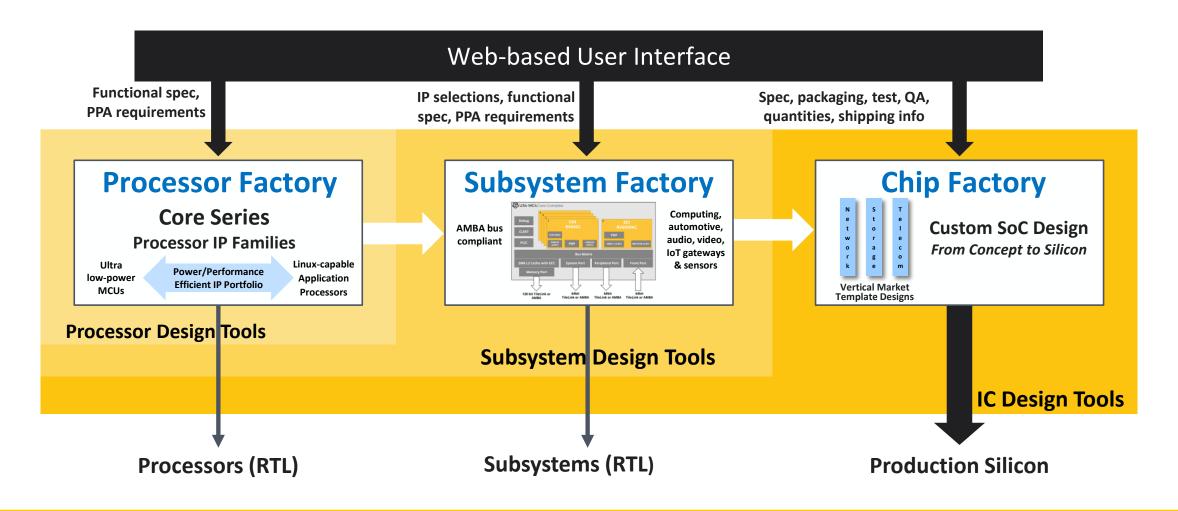
- •組込みソフトウェア開発
- •ハードウェア開発
 - (回路設計、PCB設計、機構・ 筐体設計から試作製造、量産)
- •デバッガ(ICEなど)
- データモニターツール
- •動的テスト/解析ツール
- •ソフトウェア構造分析ツール
- トレーサビリティ管理ツール

What we do

Leaders in RISC-V

- Inventors of RISC-V
- Most complete product line of CPU IP: from microcontrollers, to embedded, to highperformance multi-core processors
- Very easy to customize

Leaders in taking Semiconductors to the Cloud


- Leverages software, highlevel design, and automation
- Dramatically reduce cost and increase innovation
- Builds custom CPU IP and ASICs

Leaders in traditional ASICs (CSoC BU)

- Flexible engagement model (Spec2Chip, RTL, Netlist, GDS2, Production)
- Robust design methodology and extensive experience in integration of IP
- Manufacturing excellence
- Full responsibility of production supply chain

INNOVATION by SiFive

Introducing a fundamentally new approach to developing processor IP and custom SoCs (CSoCs)

Custom SoC BU: Full Turnkey Custom SoC Solution Capability

Product
Requirement &
Specification

Architecture
Analysis, RTL Design
& Verification

Software Design,
Development &
Test

FPGA & Emulation

Physical Design

Post Silicon
Validation &
Software Bring-up

Board Design

Test & Production Engineering

Package & Assembly

Wafer Fabrication

SiFive RISC-V Core IP Product Overview

SiFive Core IP: Efficient, High-Performance, Customizable Core IP

SiFive RISC-V Core IP

32-bit Embedded Cores

- Edge Computing
- Artificial Intelligence
- Embedded IoT
- Wearables

Industry leading 64-bit Embedded Cores

- Embedded Intelligence
- Storage/SSD
- AR/VR
- · Machine Learning

High performance, 64-bit Application Processors

- Linux applications
- Datacenter Accelerators
- Storage system controllers
- · Networking baseband

Lowest Risk, Fastest Time to Market

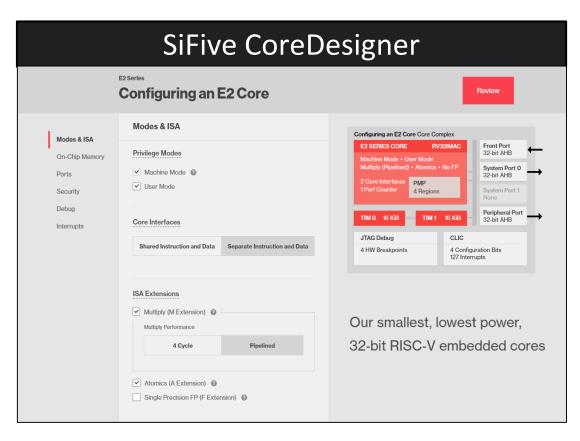
- SiFive IP is silicon-proven and our licensees are shipping
- Leaders in RISC-V standardization and new spec development
- Broadest portfolio of mature cores and a well-funded roadmap

Unique features that scale across entire product portfolio

- Single delivery with multiple cores, coherent memory subsystems, buses, assembled and verified by SiFive
- Highly Configurable, pre-integrated Verilog deliverables

Multiple Customization Options

- Highly configurable cores to achieve application specific requirements
- Custom Instructions interface allows for differentiation enabled via the extensibility of the RISC-V ISA
- Subsystem, memory map, etc.. are all customizable


Faster, Efficient Processors

 Measured higher total performance and performance/mW vs similar designs in the same process node

NEW IP PARADIGM: SiFive Core Designer \Leftrightarrow

- Annual subscription allows a customer's engineers to access SiFive's entire processor portfolio via a simple web interface
- Configuring SiFive's processor IP is fast and easy
- A configured processor is generated in the cloud and the results are delivered to the user's SiFive dashboard (RTL, SDK, test bench, docs)

- Explore Before allows engineers to analyze their configured cores in their system simulations before committing to using them
- There is no processor modeling language to learn and no IP configuration tools to install
- FPGA bitstreams are provided to allow SW to run on a configured processor

RISC-V grants every user the right to modify their processor IP; SiFive has made it incredibly easy to do so.

BUSINESS MODEL

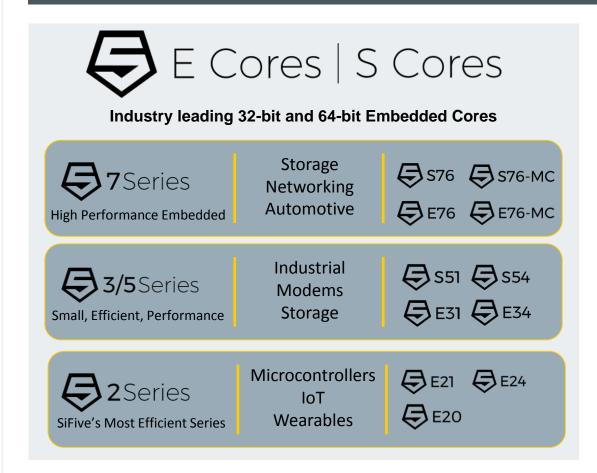
Subscription-based license for SiFive Core Designer

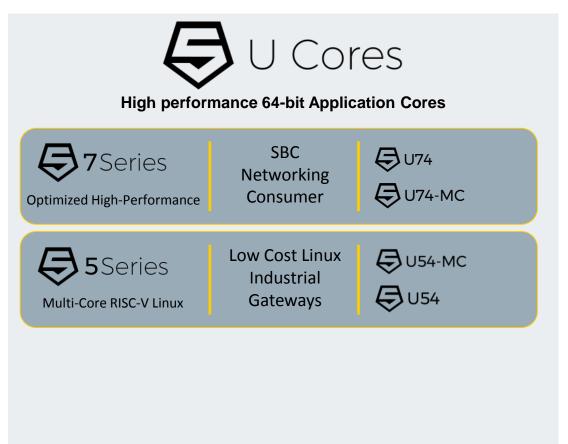
- Annual fee is based on which core series are included
- SaaS model significantly reduces your IT and EDA support requirements
- The most cost effective way of creating your own custom RISC-V cores
- Allows for exploration of different configurations

Predictable usage costs

- Pricing is determined upfront and is valid during subscription term
- Prepaid upfront and/or negotiated usage table for follow-on projects

SiFive IP Portfolio

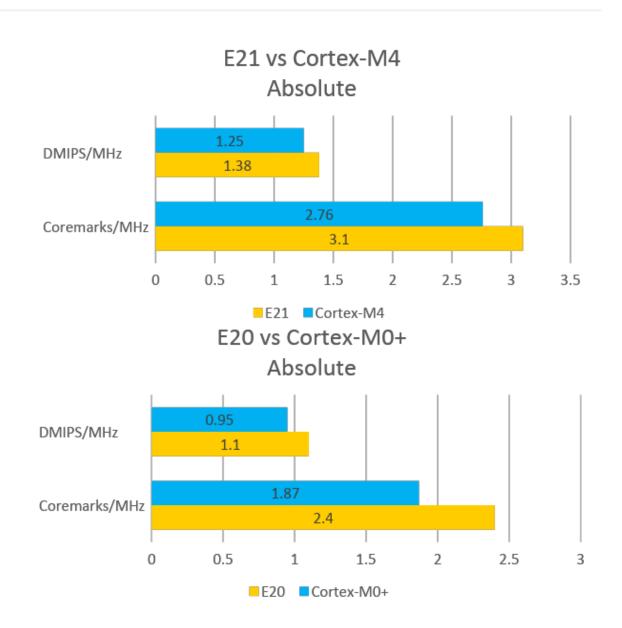

Core Series		Area	Standard Cores	ARM Comparison
Choose your foundation —	E2 Series		E20, E21, E24	M0, M0+, M3, M4, M23, M33
Core Series provide powerful capabilities for your product ideas. Choose one of our silicon-proven RISC-V Standard Cores – or customize a core to get the precise results that you need.	E3 Series	10 10 10 10 10 10 10 10 10 10 10 10 10 1	<u>E31</u> , <u>E34</u>	R4, R5
	E7 Series		<u>E76, E76-MC</u>	M7, R7, R8
	S5 Series		<u>S51, S54</u>	R4, R5
	S7 Series		<u>S76, S76-MC</u>	M7, R7, R8
	U5 Series		<u>U54, U54-MC</u>	A5, A7, A35, A53
	U7 Series		<u>U74, U74-MC</u>	A55


Get best-in-class processor IP developed by the inventors of RISC-V and configure it to your exact specifications

SiFive RISC-V Core IP Product Series

SiFive RISC-V Core IP

SiFive


Core Series are customizable to meet your requirements **Standard Cores** are pre-configured, silicon-proven implementations

Better than the Competition

- SiFive Standard Core outperform ARM equivalent cores
- E21 is 12% higher performance per MHz vs Cortex-M4 in CoreMark
 - When using equivalent GCC Compilers
- E20 is 28% higher performance per MHz vs Cortex-M0+ in CoreMark
 - When using equivalent GCC Compilers
- E2 Series configurability allows for the core performance and area to be tuned to the exact application requirements
 - The E2 Series can be configured smaller than the E20 Standard Core
 - The E2 Series can be configured with more features than the E21 Standard Core

Product Map

ECores

32-bit embedded cores MCU, edge computing, AI, IoT

S Cores

64-bit embedded cores Storage, AR/VR, machine learning

U Cores

64-bit application cores Linux, datacenter, network baseband

7 Series

Highest performance: 8-stage, dual-issue superscalar pipeline

E7 Series

- > E76-MC Compare to Cortex-M7
 Quad-core 32-bit embedded processor
- > E76 Compare to Cortex-M7 > S76
 High performance 32-bit embedded core High-

S7 Series

- > S76-MC No 64-bit Cortex equivalent Quad-core 64-bit embedded processor
- > \$76 No 64-bit Cortex equivalent > U74
 High-performance 64-bit embedded core High

U7 Series

- > U74-MC Compare to Cortex-A55 MP4
 Multicore: four U74 cores and one S76 core
- > **U74** Compare to Cortex-A55 High performance Llnux-capable processor

3/5 Series

Efficient performance:

5–6-stage, singleissue pipeline

E3 Series

- > E34 Compare to Cortex-R5F E31 features + single-precision floating point
- **E31** Compare to Cortex-R5 Balanced performance and efficiency

S5 Series

- > **\$54** No 64-bit Cortex equivalent S51 features + single-precision floating point
- > **S51** No 64-bit Cortex equivalent Low-power 64-bit MCU core

U5 Series

- V54-MC Compare to Cortex-A53 Multicore application processor with four U54 cores and one S76 core
- **> U54** Compare to Cortex-A53 Linux-capable application processor

2 Series

Power & area optimized:

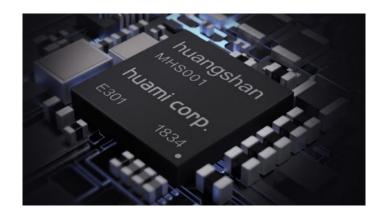
2-3-stage, singleissue pipeline

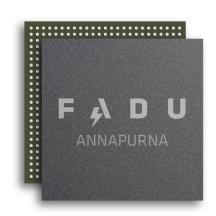
E2 Series

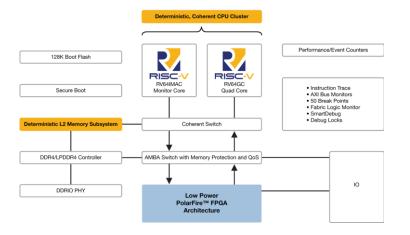
- > **E24** Compare to Cortex-M4F E21 + single-precision floating point
- > E21 Compare to Cortex-M4 E20 + User Mode, Atomics, Multiply, TIM
- **E20** Compare to Cortex-M0+ Our smallest, most efficient core

S2 Series

> **S21** No 64-bit Cortex equivalent Area-efficient 64-bit MCU core


32-bit Embedded Processors




64-bit Embedded Processors

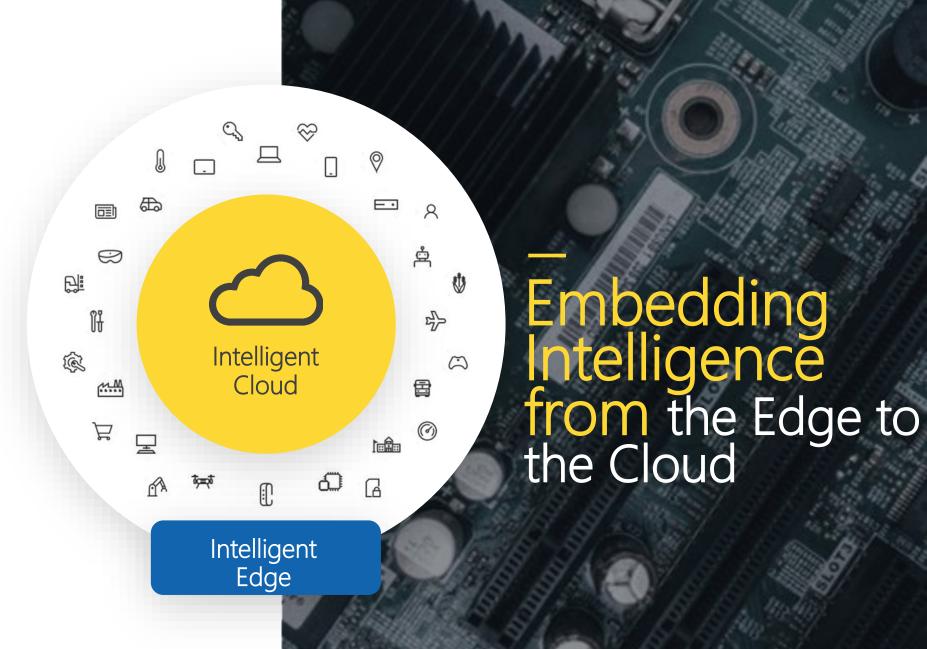
64-bit Application Processors

"SiFive's RISC-V Core IP was **1/3 the power** and **1/3 the area** of competing solutions, and gave FADU the flexibility we needed in optimizing our architecture to achieve these groundbreaking products."

-J. Lee, FADU CEO

"SiFive's **64-bit S Cores** bring their hallmark efficiency, configurability and **silicon-proven** Core IP **expertise** to 64-bit embedded architectures"

-Ted Speers, Head of Product Architecture and Planning, Microsemi, a Microchip Company


64-bit Application Processors

64-bit Embedded Processors

32-bit Embedded Processors

86

SiFive Core IP Embedding Intelligence Everywhere

Consumer

AR/VR/Gaming devices

Smart Home

Imaging/Wearables

Storage/Networking/5G

SSD, SAN, NAS

Base Stations, Small cells, APs

Switches, Smart NICs, Offload cards

ML/Edge

Autonomous machines

IoT devices

SiFive realizes modern compute requirements with scalable, efficient and customizable IP

SiFive Core IP Embedding Intelligence Everywhere

Consumer

Optimized power consumption

Differentiated products

Storage/Networking/5

Scalable portfolio

Total cost of operation (TCO)

64-bit addressability

ML/Edge

Custom instructions and coprocessors

Tightly coupled accelerators

Low power consumption

SiFive Core IP 7 Series:

Embedded Intelligence Everywhere Efficient Performance

~60% improvement in CoreMarks/MHz*

~40% improvement in DMIPS/MHz*

~10% improvement in Fmax*

Scalability

8+1 coherent CPUs in a cluster

512 coherent on-chip CPUs via TileLink

2048 multi-socket coherent CPUs via ChipLink

Compelling Feature Set

In-cluster heterogeneous compute for Application + Real-time processors

64-bit architectures across portfolio

Innovative L1 Memory microarchitecture

*Compared to SiFive Core IP 5 series

SiFive RISC-V Core IP - 7 Series

SiFive 7 Series RISC-V Core IP

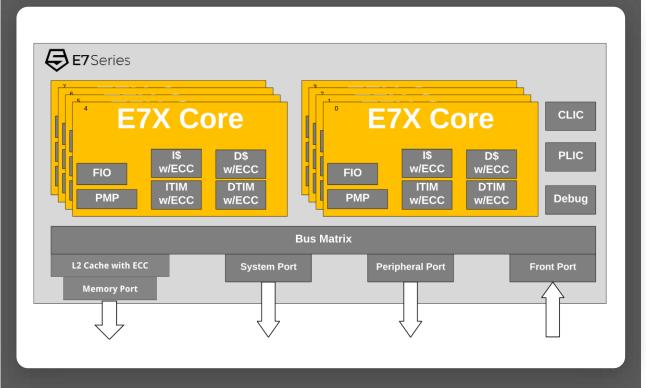
Ultra-High Performance 32-bit Embedded Processors

Unprecedented Performance/Watt/mm2
Scalable Multi-Core with Coherency
Determinism for Hard Real-Time
Fast, Deterministic, Interrupt Response
Fast IO Access
Tightly Coupled Accelerators

Ultra-High Performance 64-bit Embedded Processors

Unprecedented Performance/Watt/mm2
Scalable Multi-Core with Coherency
Determinism for Hard Real-Time
Fast, Deterministic, Interrupt Response
Fast IO Access
Tightly Coupled Accelerators

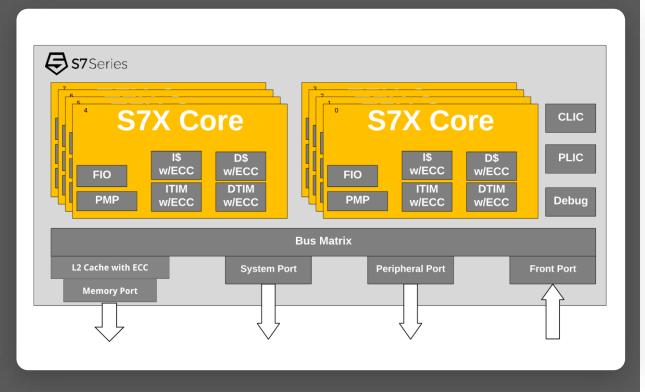
Ultra-High Performance 64-bit Application Processors


Unprecedented Performance/Watt/mm2 Scalable Multi-Core with Coherency Determinism for Hard Real-Time Fast, Deterministic, Interrupt Response

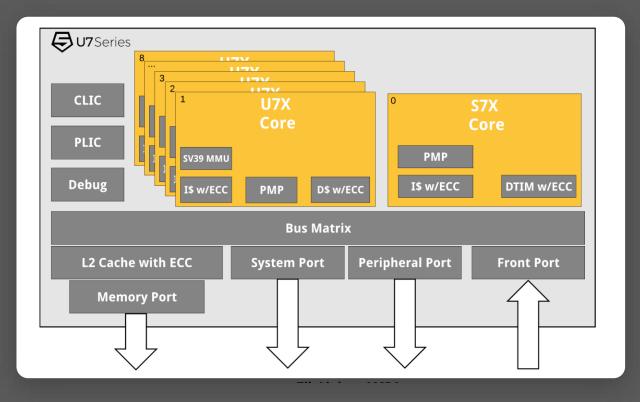
Common Feature Sets

Compared To SiFive 3 and 5 Series

- Greater than 50% performance uplift
- Improved L1 Memory System
- 10% frequency uplift

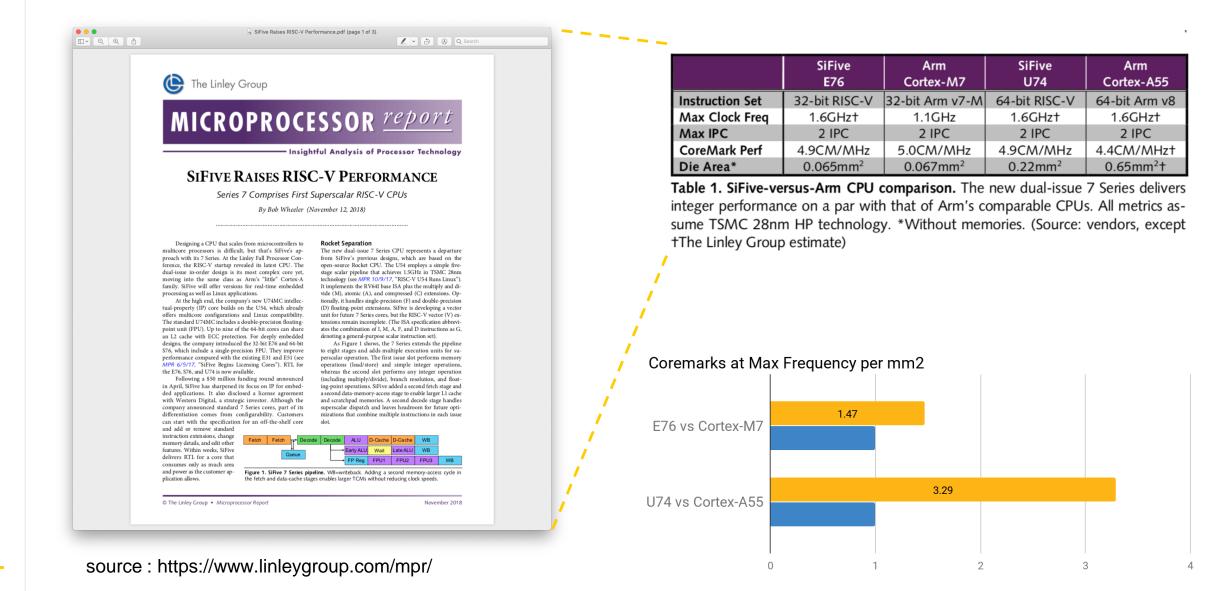

E7 Series Features

- E7 core architectural features
 - RV32GCV capable core
 - Dual Issue, in-order 8-stage Harvard Pipeline
- Very flexible memory system
 - Optional I\$ and D\$
 - Optional I and D TIM interfaces
 - Optional Fast IO Port (FIO) per core
- Multi-core capable with coherency and optional L2
- Deterministic fast interrupt responses
- Higher throughput and efficiency vs Cortex-M7
 - 2.3 DMIPS/MHz
 - 5.1 CoreMarks/MHz


S7 Series Features

- S7 core architectural features
 - RV64GCV capable core
 - Dual Issue, in-order 8-stage Harvard Pipeline
- Very flexible memory system
 - Optional I\$ and D\$
 - Optional I and D TIM interfaces
 - Optional Fast IO Port (FIO) per core
- Multi-core capable with coherency and optional L2
- Deterministic fast interrupt responses
- Higher throughput and efficiency vs Cortex-R8
 - 2.5 DMIPS/MHz
 - 5.1 CoreMarks/MHz

U7 Series Features

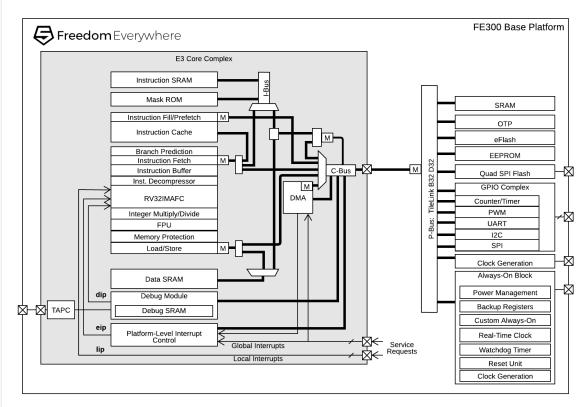


- U7 Core Architectural Features
 - RV64GCV capable core
 - Sv39 Virtual Memory Support
 - Dual Issue, in-order 8 stage Harvard Pipeline
- Heterogenous in-cluster combination of applications processor and real-time processor supported
- Configurable Level 2 Cache with cache lock capability and Tightly Integrated Memory available
- Functional Safety and Security and Real Time features
 - SECDED ECC on all L1 and L2 memories
 - PMP and MMU for memory protection
 - Programmatically clear and/or disable dynamic
 branch prediction for deterministic execution and enhanced security
- Extremely competitive performance vs Cortex-A55
 with higher efficiency and throughput
 - 2.5 DMIPS/MHz
 - 5.1 CoreMarks/MHz

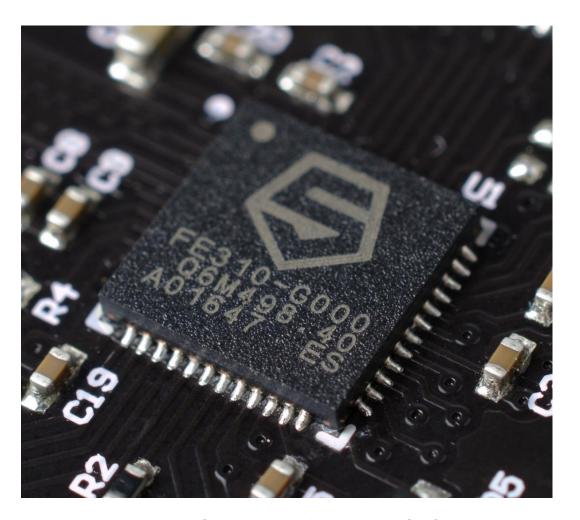
7 Series Core IP - More Efficient Performance than M7 and A55

SiFive Silicon and Development Platforms

HiFive1: Arduino-Compatible RISC-V Dev Board



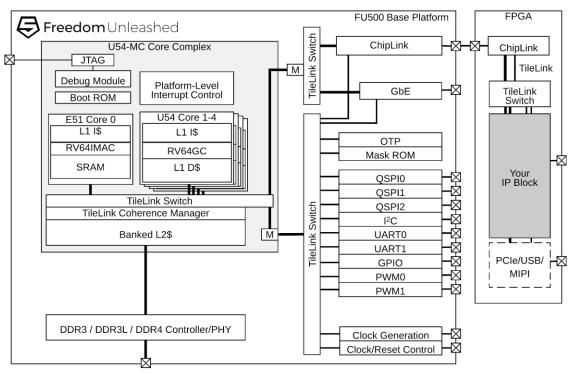
- SiFive FE310-G000 (built in 180nm)
- Operating Voltage: 3.3 V and 1.8 V
- Input Voltage: 5 V USB or 7-12 VDC Jack
- IO Voltages: Both 3.3 V or 5 V supported
- Digital I/O Pins: 19
- PWM Pins: 9
- SPI Controllers/HW CS Pins: 1/3
- External Interrupt Pins: 19
- External Wakeup Pins: 1
- Flash Memory: 16 MB Quad SPI
- Host Interface (microUSB): Program, Debug, and Serial Communication

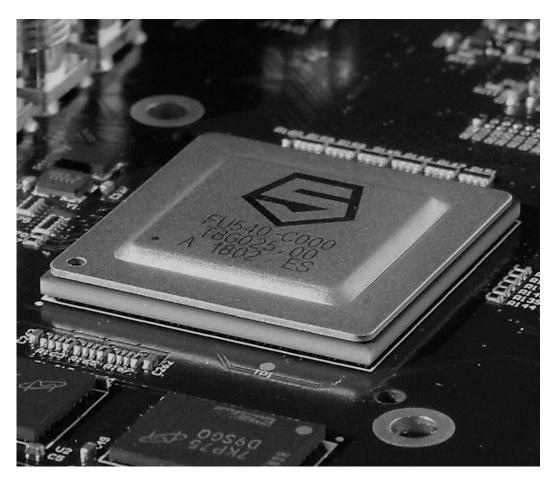


Freedom Everywhere 32-bit Low-power microcontroller platform

- 320+ MHz SiFive E31 CPU
 - 16KB L1I\$, 16KB Data Scratchpad
 - Hardware Multiply/Divide, Debug Module
- Multiple Power Domains
- Low-Power Standby
- Wide Range of Clock Inputs

Freedom E310, QFN48, manufactured in TSMC 180nm


HiFive Unleashed: World's First Multi-Core RISC-V Linux Dev Board


- SiFive FU540-C000 (built in 28nm)
- 8 GB 64-bit DDR4 with ECC
- Gigabit Ethernet Port
- 32 MB Quad SPI Flash
- MicroSD card for removable storage
- MicroUSB for debug and serial communication
- Digital GPIO pins
- FMC connector for future expansion with add-in cards

Freedom Unleashed 64-bit Multi-Core RISC-V Linux Platform

- 1.5+ GHz U54-MC SiFive CPU
 - 1x S51: 16KB L1I\$, 8KB DTIM with ECC support
 - 4x U54: 32KB L1I\$, 32KB L1D\$ with ECC support
 - Single- and Double-precision floating-point support
 - 2MB Banked L2\$ with directory-based cache-coherence & ECC support
- ChipLink
 - Serialized Chip-to-Chip Coherent TileLink Interconnect
- DDR3/4, GbE, Peripherals

Freedom U540, FCBGA, manufactured in TSMC 28nm